A NOTE ON PERFECTLY CONTINUOUS FUNCTIONS

T.M. Nour
Department of Mathematics
University of Jordan
Amman-Jordan

Published: 18 April 2019
Copyright © Nour.

ABSTRACT
The concept of perfectly continuous functions was introduced by Noiri [4]. In this paper some more properties of perfectly continuous functions are obtained.

INTRODUCTION
In 1984, Noiri [4] introduced the class of perfectly continuous functions and investigate its relationship with other strong forms of continuity such as complete continuity [1], strong continuity [2]. In this paper we give new results on perfectly continuous functions.

Definition 1. A function \(f : X \to Y \) is said to be perfectly continuous [4] if the inverse image of every open set in \(Y \) is both open and closed in \(X \).

Definition 2. A function \(f : X \to Y \) is said to be strongly continuous [2] iff the inverse image of every open subset in \(Y \) is open and closed in \(X \).

Definition 3. A function \(f : X \to Y \) is said to be completely continuous [1] if the inverse image of every open set in \(Y \) is regular open in \(X \), where \(A \) is regular open iff \(A = \text{Int}(\text{cl}A) \).

Cite this article: Nour, T.M. (2019). A Note on Perfectly Continuous Functions. European International Journal of Science and Technology, 8(3), 91-93.
Noiri proved that:
Strong continuity \Rightarrow Perfect continuity \Rightarrow Complete continuity \Rightarrow continuous.
He proved also by means of examples that the converse implications are not true in general.

Theorem 1. Every perfectly continuous function into a T_1 space is strongly continuous.

Proof: Let $f : X \to Y$ be perfectly continuous and Y is a T_1 space. Let A be any subset of Y. Then $f^{-1}(A)$ is open and closed in X, since singletons are closed in a T_1-space.

Theorem 2. If $f : X \to Y$ is a perfectly continuous function from a connected space X on to any space Y, then Y is an indiscrete space.

Proof: If possible, suppose that Y is not indiscrete. Let A be a proper non-empty open subset of Y. Then $f^{-1}(A)$ is a proper non-empty clopen subset of X, which is a contradiction to the fact that X is connected.

Theorem 3. Every perfectly continuous function from an extremally disconnected space is perfectly continuous.

Proof: The proof is obvious since every regular open subset in an extremally disconnected space is clopen.

Theorem 4. Let $f : X \to Y$ be perfectly continuous and one-to-one. If Y is T_0, then X is Urysohn.

Proof: Let a and b be any pair of distinct points of X. Then $f(a) \neq f(b)$. Since Y is T_0, there exists an open set U containing one of them say $f(a)$ but not $f(b)$. Then $a \in f^{-1}(U)$ and $b \notin f^{-1}(U)$ is clopen. f is perfectly continuous implies $f^{-1}(U)$ is clopen. Also, $a \in f^{-1}(U)$ and $b \in X - f^{-1}(U)$. Thus a and b are separated by disjoint closed sets. Hence X is Urysohn.

Theorem 5. If X is connected and Y is T_0, then the only perfectly continuous functions $f : X \to Y$ are constant functions.

Proof: If possible, let $f(X)$ consist of more than one point. But then $f(X)$ is T_0 also, which is a contradiction.

Definition 4. A function $f : X \to Y$ is said to be almost open [3] if the image of every regular open set is open.

Theorem 6. The image of a locally connected space under a perfectly continuous almost open function is locally connected.

Proof: Let $f : X \to Y$ be perfectly continuous and almost open. Let X be locally connected. Let U be any open subset of Y and $f(x) \in U$. Then $x \in f^{-1}(U)$. Now, $f^{-1}(U)$ is open and closed in X. Since X is locally connected, there exists a connected open subset V of X such the
\(x \in V \subseteq f^{-1}(V).\) But \(f^{-1}(U)\) is closed, therefore, \(x \in V \subseteq \text{cl}(V) \subseteq f^{-1}(U).\) Hence \(V\) and \(\text{cl}(V)\) are connected. Also, \(\text{int}(\text{cl}(V))\) is connected. Clearly, \(x \in \text{int}(\text{cl}(V)) \subseteq f^{-1}(U).\) Hence \(f(x) \in f(\text{int}(\text{cl}(V))) \subseteq U.\) Now, \(f(\text{int}(\text{cl}(V)))\) is connected and \(f(\text{int}(\text{cl}(V)))\) is open since \(f\) is open. Hence \(Y\) is locally connected.

Theorem 7. If \(f : X \to Y\) is perfectly continuous and \(A \subseteq X,\) then \(f|_A : A \to Y\) is perfectly continuous.

Proof: Let \(V\) be any open subset of \(Y.\) Then \(f^{-1}(V)\) is clopen in \(X.\) Then \(f^{-1}(V) \cap A = \left(f|_A^{-1}\right)(V)\) is clopen in \(A.\) Hence \(f|_A\) is perfectly continuous.

REFERENCES

