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Abstract  

 
The general formulae for the total spectral transmittance ����and specular reflectance ����of an 

“ideal”four-layered optical system of the {air/film/thickdielectric substrate/air}-pilingwere fully derived for 

thin and thick films using the ��– �� transfer matrix method, combined with incoherent treatment of light 

plane waves normally incident upon the system. The attained����- and����- formulae at the wavelength �are explicitly expressed in terms of 	 and 	
, the indices of refraction of the film and substrate,as well as of �and �, the thickness and extinction coefficient of the film. These ����- and����-formulae are akin to those 

quoted in the literature for analyzing experimental transmission and reflection data of “ideal” four-layered 

structures in their transparent and absorbing spectral regions. The derived ���� and ����formulaecan 

readily be extended to the oblique-incidence case and to include the effect of optical absorption of the 

substrate.  

 
1. Introduction  

 
Knowledge of accurate values of the complexindex of refraction	�λ�of thin solid films as a function 

ofthe spectral wavelength λof the light incident upon them is essential, both from fundamental and 
technological viewpoints. This yields good information ontheirband-energy structures and on the 
wavelength dependence (i.e., dispersion) of their optical constants[1-24].In the present article, Ishall adopt 

the nomenclature 	�λ� ≡ 	�λ� − �κ�λ�,with � ≡ √−1, where 	�λ� and κ�λ�are its real and imaginary parts, 
and usethecircumflexon the algebraic symbols to designate complex quantities.Often, 	�λ�is called the 
ordinary index of refraction of the material, which largely determines how reflective and refractive a film 
made from this material will be,and κ�λ� is itsextinction coefficient, which governs the optical absorptionof 
electromagnetic waves propagating throughoutit. The absorption phenomena in a substance can also be 
specified by the absorption coefficient α�λ�, which is related to κ�λ�through the relation:α�λ� ≡ 4πκ�λ� λ⁄ . 

The experimental optical findings usually exemplify the quality of the investigatedlayers(films), 
existence of native impurities and structural defects in them as well as the nature of dispersion and optical 
transition phenomena taking place in thesefilms. This is important for assessing the performance of 
electronic and optical devices incorporating them. Also, the index of refraction of a material is necessary for 
the design and modeling of a variety of optical systemsintegratingthin films made from this material.If the 
model of a linear, isotropic, homogeneous, and nonmagneticplane-parallel thin film (hereafter called an 
“ideal” film) is applicable, the real 	�λ�and imaginary κ�λ�parts of its complex index of refraction 
completely determine its optical properties, in addition to otherrelated physical features[16-58]. When 
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theseideal requirements are not met as in case of inhomogeneous and rough films, it is still possible to model 
the optical properties of these “non-ideal” thin films, albeit with much more complexity [59-73]. 

Independent measurements of two macroscopic optical quantities are in principle necessary at each 
spectral wavelengthλ in order to solve their theoretical expressions for the two unknowns 	�λ� and κ�λ� of 
the layer under study [17, 24]. One type of optical measurement may be sufficient if the data is scanned over 
a wide range of wavelengths of the light incident onto the layer, but the two independent macroscopic 
optical measurements are sometimes necessary.Further, the knowledge of 	�λ� and κ�λ� of a layer enables 

one to determine α�λ� and the band-gap energy�� of its material. A variety of optical characterization 

techniquesare normally employed to getthe experimental data required for determining optical parameters; 
with each techniquehaveits own advantages and disadvantages [1-25, 70]. 

A powerfulmethodthat has been commonly implementedfor the evaluationof 	�λ� and κ�λ�of afilm is 
that based on non-destructive measurements of its normal-incidence transmittance ��λ�and/or specular 
reflectance ��λ� over the ultraviolet-visible-infrared (UV-Vis-IR) regions of the electromagnetic spectrum. 
In this situation, most of the literature experimental work on optical properties of solid layers has been often 
realized on three-layeredstructures wherein a layerjust stands freely in air (an air-supported layer) or on 
simple four-layeredstructures, in which a filmis deposited onto a thick substrate, with the whole optical unit 
beingimmersed in air. 

A rigorous analysis of the measured spectral transmittance and reflectance of three- or four-layered 
structuresto determine the optical constants of their stacked layers, however,requires propertheoretical 
formulae that adequatelydescribe theirexperimental ��λ� and ��λ�spectra. In many of thereported journal 
articles[25-57], the theoretical formulae of ��λ� and ��λ�describing “ideal”four-layered structures are just 
cited from references thatare occasionallyaccessibleto many readers, orare just quoted without reference or 
were presented in concisesymbolical approaches, in most of which model approximations were not 
explicitly emphasized. One may also encounterdiverseintricate��λ�- and ��λ�-formulas forthe idealfour-

layered structures in some books of optics thatwere derived by the use of different modeling approaches [9-
17, 20-33].Further,Šantić and Scholz [58] were unable to re-derive the frequently adopted ��λ�-formula [35] 
that describesthe normal-incidence transmittance of an “ideal” four-layered structure made from for an 
absorbing film laid on a dielectric substrate, both of which are bounded by air. These authors questioned the 
correctness of such a ��λ�-formula and instead, based on certain assumptions and restrictive conditions, 
have derived a different normal-incidence��λ�-formula for the optical system of concern. The authenticity, 
adequacy and correctness of the ��λ�-formula commonly reported in the literature for “ideal”four-layered 
structures would thus become questionable and illusive for the scientists working in the field. 

Therefore, I have been driven to derive from scratch the spectral normal-incidence transmittance��λ�- 
formula as well as the respective formula of the specular reflectance ��λ�forthe “ideal” four-layered 
structurehaving the {air/film/thick dielectric substrate/air} piling, whether the film is thin or thick as well as 
conducting or dielectric (transparent). The obtained ��λ�- and ��λ�- formulae for such a four-layered 
structure, which were found to match the universally accepted ��λ�- and ��λ�- formulations,encouraged me 
to claim that the presentarticle can serve as a self-contained, autonomous and thorough reference for those 
engaged in the physical interpretation and numerical analysis of measured optical data of both three- and 
four-layered structures. Further, the approach used here to accomplish the required��λ� and ��λ�formulations can, in principle,be generalized to the case of monochromatic light plane waves that are 
incident either normally or obliquely upon multi-layered structures whose individual layers made from a 
combination of dielectric and/orsemiconducting substances of diverse physical properties.  
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2. General theoretical aspects 
 

The simplest solution of the coupled Maxwell’s first-order linear partial differential equations fora beam 
of monoenergetic (monochromatic)electromagnetic (EM) radiation propagating intofree-space or in an 
extended materialregion isa plane waverepresented by spatially-dependent and time-harmonic complex 

electric����, ��and magnetic����, ��field vectors, whose real or imaginary parts have only physical meaning. 
For a monochromatic EMplane wave propagating through a linear, isotropic, homogenous, and conducting 

(or semiconducting) medium,����, ��- and ����, ��- vector fields, which must satisfy allMaxwell’s 
equations,are usuallyexpressed, for mathematical convenience, in complex formatsas below [9, 14-17, 20-
24, 29-30, 74-76] 
 

�����, ������, ��� =  ��!��!" exp&−��'(  . � − +�, =  ��! exp�−'-. ����! exp�−'-. ��" exp.−��'/ . � − +�0                    �1� 

 
The symbols �and t represent, respectively, the spatial position vector and time, while +isthereal 

angular frequency of photons comprising the incoming monochromatic EM planewave whose wavelength 

λ! ≡ �2π2 +⁄ �, where 2 is light speed in vacuum. Generally, '(  is acomplex wave propagation vectordefined 

here, to be consistent with the definition of other complex physical quantities, as'( ≡ '/ − �'-, with � ≡ √−1, where '/ and '- are its real and imaginary vector parts, respectively. The time- and spatially- 

independent pre-exponential quantities ��! and ��! are, respectively,the complex-vector amplitudes of the 

electric- and magnetic-vector fields of the original EMradiation striking the medium. In fact,��! and ��!determine the real energy carried by the respective plane-wave field,which is proportional to the 
timeaverage (over at least one period � ≡ 2π +⁄ ) of the square modulus of its associated fields- that is 〈4����, ��45〉7and 〈4����, ��45〉7. 

An energy quantity which is usefulin the discussion of the behavior of EM waves crossing a 

discontinuous boundary of two dissimilaradjacent media is the Poynting vector8���, ��, defined by8���, �� ≡����, �� x ����, ��. For a harmonically time-dependent plane EMwave, the time-averaged〈8���, ��〉7is a real 

quantitythat determines the amount of electromagnetic energy per unit area per unit time (energy flux per 
unit area or intensity) and the direction of wave propagation. As complex-vector fields of a plane EM wave 

are time-harmonic with the same frequency, but not necessarily of the same phase,〈8���, ��〉7can be described 
by the formula[9, 22-23, 29-31, 74-76] 
 

〈8���, ��〉7 ≡ 〈����, �� x ����, ��〉7 = 12  Re &����, �� x��∗��, ��,                                                                 �2� 

 

The quantity��∗��, �� is the complex vector conjugate of the magnetic-field vector����, ��.  
Another important phenomenon in optics which governs the behavior of plane EM waves crossing 

aphysical interface of two dissimilar optical media is the so-called state of polarization of the wave. In 
accordance with traditional terminology, the direction of the time-harmonic vibrating electric field vector ����, ��of an electromagnetic wave at apoint �in space is taken to represent the state of polarization of the 

wave[9, 22-23, 74-76].In brief, a planeEM (light) wave is referred to as unpolarized if Re ;����, ��<, the real 

partof its complex electric-field vector ����, ��, is randomly vibrating in space and time in all possible 

directions, while alightwave is said to be linearlypolarizedwhen its Re ;����, ��< is time-harmonically 

vibrating along a particulardirection in space. More generally, the complex vector amplitude ��! of the 
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electric-field vector ���0, ��of a plane EMwave can be resolved at a certain point, say � = 0, into two 

perpendicular complex vector components as��! = >��!? + A��!B = >�?exp ��∅� + A�B,where > and A are 

two real orthogonalunit vectors. The angle ∅ is a phase difference between the vector components ��!? and ��!Bwhich determines the state of polarization of the plane wave[9, 22-23, 74-76]. For a linearly-polarized 
plane EM wave ∅ takes the values 0 or π, depending on the orientation of itsreal electric-field vector Re ;���0, ��<, while a circularly-polarized plane EM wave corresponds to∅ = ± π/2 with equal vector 

amplitudes of its Re ;���0, ��<-components (�? = �B). The more general state of polarization of a plane EM 

wave is the elliptical polarization when ∅ = ± π/2 and �? ≠ �B or for other values of∅ (even if �? = �B), so 

that the minor and major axes of the corresponding ellipse are at an angle to the >- and A- axes [9, 22-23, 74-
76].  

Consider alinear, homogeneous, isotropic, conducting, andnonmagnetic medium of a non-vanishing 
electrical conductivityGH, an electric permittivity I = I!I/ and a magnetic permeability J = J!, whereI! and J! are the free-space permittivity and permeability, respectively, andI/ is the medium’srelative electric 
permittivity (dielectric constant). The solutions of Maxwell’s equations given in Equation (1) for a 
monochromatic plane EM wave travelling through such a medium are only satisfied for a complexwave 

propagation vector '( , of magnitude k� ≡ L'(  . '( , connected to the real angular frequency + of the incoming 
EMradiation by a dispersion relation of the form  
 

k� = Mk/5 − k-5 − ��2 '/. '-� = +2 NI/ − � GHI!ωPQR = +2 √Î/ ≡ +2 	 ≡ +2 �	 − ���                         �3� 

 
Equation (3) tells us that if 	 and� of asubstance are given and real, the quantities I/ and �GH I!ω⁄ �, the 
realand imaginary partsof its complex dielectric constant I/̂ = I/ − ��GH I!ω⁄ �, can then be found(and vice 
versa)from the relationships 
 

I/ = 	5 − �5 GHI!ω = 2	�                                            �4a� 

 
However, the electric conductivity GH, just like the dielectric constantI/, is not a true constant of the 

medium, but is generallya complex function of the angular frequencyω. Thus, to ensure the positivity of the 
real and imaginary parts of the complex optical parameters, a complex conductivityGH�ω�that varies with 

frequencyis traditionally defined asGH�ω� ≡ G ′�ω� + �G ′′�ω�, where G ′�ω� and G ′′�ω� are its real and 

imaginary parts, which isrelated to a complex dielectric constant I/̂�ω� ≡ I/′�ω� − �I/ ′′�ω�asGH�ω� ≡�ωI!I/̂�ω� [3, 9-12, 16-24, 31,74-77]. The real part of I/̂�ω�, i.e., I/ ′�ω� = G ′′�ω�/ωI!, is hence a 
combination of aconstant dielectric constant I/ and a frequency-dependent part arising from 

dispersiveprocesses, whereas G ′�ω�could be due to a constant dc electrical 

conductivityGVHandωI!I/′′�ω�arising from some sort of a frequency-dependent (dispersive)process[3, 9-12, 
16-24, 31, 74-77].The complex index of refraction 	�ω� of a linear, isotropic, homogeneous, dispersive and 
nonmagnetic medium is also related to its complex dielectric constant I/̂�ω� via a Maxwell-like formula, 

namely 	�ω� = 	�ω� − ���ω� ≡ LI/̂�ω�[3, 9-12, 16-24, 31, 74-77]. Accordingly, Equation (4a) still holds 

through replacing the constant parametersI/ and GH I!ω⁄  bythe frequency-dependent real and imaginary 
components of the complex dielectric constantI/̂�ω�- that is, 
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I/ ′�ω� = .	�ω�05 − .��ω�05I/ ′′�ω� = 2	�ω���ω�                      �4b� 
 
Thus, the empirical or theoretical models of the frequency-dependent dielectric constant and electric 
conductivity, through which the physical properties of a substance are originally expressed, can be employed 
to validate the dispersive behavior of its optically measured index of refraction 	�ω� and extinction 
coefficient��ω�. 

At this stage, it is worth to discusssome physical realities regarding the propagation of a monochromatic 
plane electromagnetic (light)wave of a real angular frequency +(corresponds to a free-space wavelength 
λ! = 2π2 +⁄ = 2π k!⁄ , where2 is the speed of light in vacuum and k!is the magnitude of EM plane wave 
propagation vector'X) in both conducting and non-conducting or insulating (dielectric)media.  

In a linear, isotropic, homogeneous and nonmagnetic dielectric medium of a real index of refraction 	 
(� = 0), such a light plane wave will travel along the direction of a real propagation vector ' = k Y, 
withYbeing a real unit vector and k = 2π λ⁄ , where λ is the wavelength of the light plane wave travelling 

inside such a medium. The associatedEMcomplex field vectors will thus be expressed as����, �� =�� exp.−��'. � − +�0and ����, �� = �� exp.−��'. � − +�0, where �� and �� are their complex constant vector 

amplitudes that are interlinkedas�� = �k +⁄ �&Y x ��,and are perpendicular to each other (i. e., ��. �� = 0).If 

ϵ/ ≠ 0,both �� and �� vectors are perpendicular to '(or Y)- that is,Y. �� = Y. �� = 0 always and the light wave 
isthus calledtransverse. A non-vanishing polarization charge density in a linear, isotropic, homogeneous and 
stationary medium free of both external charges and conduction-current sources can only produce a 

longitudinal electric field when ϵ/ = 0, with Z���, �� = 0 and '[ ����, �� = 0, since \. ����, �� ≠ 0 even 

though \. ]���, �� = 0[74-77]. The quantities Z���, �� and ]���, �� are, respectively, the magnetic intensity and 

electric displacement vectors, which are often related to the EM field vectors ����, �� and ����, �� via the so-
called constitutive equations [4-17, 20-24, 74-77].In such a linear, isotropic and non-magnetic dielectric 

medium, the vectors ', ��, and �� (in that order) form a right-handed orthogonal setand one can getthe 

simpletransversedispersionrelationk = √ϵ/+/2 = 	+/2. 
It deserves noting here that the vanishing of the dot productof the two complexelectromagnetic field 

vectors����, ��and ����, ��does not in general mean that their real parts are perpendicular. But, for a 
monochromatic electromagnetic planewave propagating throughouta ponderable material medium, it can be 

shown that, at a certain spatial point� and at a time instant t, Re ����, ��. Re ����, �� = 0and Re ��. Re �� = 0, 
irrespective of the state of polarization of the plane wave entering the medium [74-76].  

On the other hand, when a monochromatic time-harmonic plane EM wave is travelling througha linear, 
homogeneous, nonmagnetic conducting medium characterized by a complex index of refraction 	 ≡ 	 −� κ, the propagation vector of the plane wave is, however, a complex vector quantity with its 

magnitudek�being related, via Equation (3), to	ask�  ≡ 	+/2. Thus, the time-harmonic and spatially-

dependent complex electric- and magnetic- vector fields ����, �� and ����, �� of amonochromatic plane EM 
wave propagating inside such a conducting medium will be generally described by Equation (1).  

In the case of the above-specified conducting medium and when '/ and '- have different 

directions,����, �� and ����, �� are not in phase with each other and their real parts do not have to be 
perpendicular to neither the vector '/, along which the wave is propagating, nor to the vector '-, along 
which the wave amplitude decreases most rapidly. Still, the wave is still called transverse(if ϵ̂/ ≠ 0) in the 

sense '( . �� = 0 and '( . ��, where ��  and �� are the complex vector amplitudes of ����, �� and ����, ��, the real 
parts of whichare not perpendicular to each other, except for monochromatic linearly-polarized plane EM 

waves [76].Its complex vector amplitudes �� and ��should be inter-linked by�� = ^'(  x ��_/+ or, by making 
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use of both of the relation'( . �� = 0 and of the BAC-CAB rule, these ��- and ��- complex vector amplitudes 

can now be inter-connected by the formulas:�� = −&+ ^'( . '( _⁄ ,^'(  x ��_ = −�2 +⁄ 	5�^'(  x ��_[74-76].  

Now, let us assume that the propagation vectors '/and '-to have the same spatial directionsuch that '(  = 

(k/ − �k-) Y=k� Y, where Y is an arbitrary real unit-vector along which the light plane wave is propagating 
insidemedium. This assumption does hold for the case of a light plane wave entering a linear, isotropic, 
homogeneous and nonmagnetic conducting medium at normal incidence to a plane boundary. In this special 
and practical situation, one can show that k/ = 	+ 2⁄ and k- = �+ 2⁄ , and the respective electromagnetic 

plane wave field vectors ����, �� and ����, ��are not in phase with each other,yetthe plane wave is still 

transverseif ϵ̂/ ≠ 0such that Y. ����, �� = 0 = Y. ����, ��.These electromagnetic plane wave complex vector 

fields����, �� and ����, ��are now interrelated as 
 

����, �� = 	2 ;Y x ����, ��<                                                                                                                            �5� 

 

Furthermore, the quantities Re ���0, �� and Re���0, �� are still notperpendicular to each other, except for 

monochromatic linearly-polarized electromagnetic plane waves. 

Now, put Y . � = ζ in Equation (1) and '( =�k/ − �k-�Yto get the formula  
 ����, �� = ;��! exp�− �+ζ 2⁄ �< exp.−�+�	ζ 2⁄ − ��0                                                                         �6� 

 
Equation (6) implies that amonochromatic lightplane wave of original wavelength �!propagating along 

the u-direction through alinear, isotropic, homogeneous, and nonmagnetic conductorhas a phase velocity b? = Y 2 	⁄ , a wavelength � = 2π k/⁄ = �! 	⁄ and its electric-field vector amplitude is most rapidly 

attenuated (exponentially) into the conductor. Also, one can show, using Equations (2) and (5) in 

conjunction with the BAC-CAB rule, that the time-averaged Poynting vector 〈8���, ��〉7of a light plane wave 
propagating in a conducting medium is given by  
 

〈8���, ��〉7 = Y �12  Re �	∗ 2⁄ �4����, ��45�,                                                                                                 �7� 

 
where	∗ is the complex conjugate of 	.  

As imposed by Maxwell’s Equations and their time-harmonic plane wave solutions, the optical and 
dielectric properties of alinear and nonmagneticsubstanceiscompletely determined by its own wavelength-
dependent (dispersive) complex index of refraction	�λ� ≡ 	�λ� − �κ�λ�, which also governsthe reflection 
and transmission of plane waves at aphysical boundary (interface) of two dissimilar media. The direction of 
specularly reflected and refracted (transmitted) plane light waves at the interface of suchoptical media can 
be determined by the common laws of specular reflection and refraction (Snell’s law), which is modified in 
case of conducting media[9-17,20-31,74-76]. Let a monochromatic light plane wave propagating in a 
mediumdof a complex index of refraction 	eto hit obliquely, at an angle of incidence θe, a smooth and 
homogeneous interface of another medium fof a complex index of refraction 	g. Thewave will be 

specularly reflected back into the incident medium at an angle of reflection θe′ ≡ θeand refracts into the 
adjacent medium fat an angle of refraction θg.As the indices of refraction of the two media are complex, 

both the reflection and refraction angles arealso complex quantities, designated by θ�eand θ�g, the geometric 
meaning of which is not understood in the usual way. These complex angles of reflection and refraction can 
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still be connected by a modified form of the ordinary (usual)Snell’s law valid in case of dielectric media 

as	e sin θ�k = 	5 sin θ�5 [9-17, 20-31,74-76].It is worth noting here that the algebraic derivation of the 
mathematical formulations describing vector-/scalar- field quantities related to the reflection and refraction 
of plane monochromatic electromagnetic waves at the interface of two dissimilar media does not appeal to 
geometry, with the results, nevertheless,remain formally correct in both obliquely- ornormal- incidence 
cases.  

The amount of reflected and transmitted electromagnetic energy flux per unit area (intensity) at an 
interface of two dissimilar media cannot, however, be extracted from the laws of specular reflection and 
refraction and can only be determined quantitatively from Fresnel’s electric- or magnetic-field amplitude 
reflection and transmission coefficients[9-17, 20-31,74-76].The Fresnel’s reflection and transmission 
coefficients at an interface of twomedia are in general complex functions inthe refractive indices of these 
media as well as in theangles of incidence and refraction of the plane wave incidentattheircommon interface. 
Also, the magnitudes of Fresnel’s reflection and transmission coefficientsare dependent on thespectral 
wavelengthof this electromagnetic plane wave as well as on its state of polarization (in case of oblique 
incidence). 

A planeelectromagnetic wave is called p-or s- linearly polarizedwhen its associated electric-field 
vectoris, respectively,parallel or perpendicular to the plane of incidence containing the propagation vectors 
of the incident, reflected, and transmitted waves at an interface of two mediaas well as to areal unit-vector 
nnormal to such interface, which is perpendicular to the plane of incidence.The Fresnel’s reflection and 
transmission coefficients for p- or s- linearly polarized plane electromagnetic waves having the complex 

electric-field vector amplitudes��-? or ��-B and are obliquely incident at the interface of two media d and fare 

defined as: �l̂eg�? ≡ ^��/? ��-?m _, ��̂eg�? ≡ ^��n? ��-?m _,�l̂eg�B ≡ ^��/B ��-B⁄ _ and ��̂eg�B ≡ ^��nB ��-B⁄ _,where��/?, ��n?, ��/B, and��nB are complex amplitudes of the electric-field vectors of plane waves reflected and transmitted 

at that interface[9-17, 20-31,74-76].At normal-incidence, however, the distinction between the two types of 
light wave polarization in the formulations of reflection and transmission becomes irrelevant.  

Now, consider aplane light wave propagating in a linear, isotropic, homogenous and nonmagnetic 
conductingmedium dis incident normally (θe = 0o) atits interface to anotheradjacent linearisotropic, 
homogenous and nonmagnetic conductingmedium f. In the normal-incidence case, thefour independent 
expressions ofobliquely-incidence Fresnel’s complex electric-field amplitude reflection and transmission 
coefficients, which are given in Appendix A and discussed in a variety of books of classical optics and 
electrodynamics [9-17, 20-31,74-76], reduce to a couple of independent general expressions of the form 
 

l̂eg = 	e − 	g	e + 	g = �	e − ��e� − �	g − ��g��	e − ��e� + �	g − ��g�  = �	e − 	g� − ���e − �g��	e + 	g� − ���e + �g�                                     �8� 

 

�̂eg = 2 	e	e + 	g = 2 �	e − ��e��	e − ��e� + �	g − ��g�  = 2 �	e − ��e��	e + 	g� − ���e + �g�                                     �9� 

 
Equations (8) and (9) are generally valid for normal-incidence light reflection and transmission that 

occur ateither side of each interface of two adjacent linear, isotropic,homogeneous and nonmagnetic 
conducting or non-conducting media. The formulae of obliquely-/normal- incidence Fresnel’s reflection and 
transmission coefficients for monochromatic p- and s- plane light waves satisfy two interrelated 
identities,which can be described as a set of expressions that are useful when one medium is conducting (or 
optically absorbing) 
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l̂eg = −l̂gel̂eg5 + �̂eg�̂ge = 1                                         �10� 
 

The general expressions that describethe obliquely-incident Fresnel’s reflection and transmission 
coefficients or the corresponding normal-incidence counterparts, which are cited in Equations (8) and (9), 
and the general identities given in Equation (10) form the basis of any general analysis to derive the 
formulations for the optical response of ideal multi-layered structures. This mathematical treatment can 
easily take into account possible multiple internal reflections and/or optical absorption that may occurinside 
one or more of the structure’s layers of finite thicknesses and having smooth, homogeneous and plane 
parallel surfaces. However, we do not measure directly the Fresnel’s reflection and transmission coefficients 
of a plane electromagnetic wave at an interface of two dissimilar adjacent media but we do measure the 
reflected and transmitted light intensity (or the time-averaged Poynting vector component normal to a 
detector surface) relative to its incidentintensity.By making use of Equation (7) and n = u, the expressions 
that describe the intensity reflection coefficient �eg and transmission coefficient �egfor a plane 
lightwavetravelling in medium l and hittingnormally the interfaceto themedium m can readily be shown to 
have the following forms[9-17, 20-31,74-76] 
 

�eg ≡ 〈8�/��, ��〉7 . r〈8�-��, ��〉7. r =  s��/��, ����-��, ��s5 = l̂egl̂eg∗                                                                                         �11� 

 

�eg ≡ 〈8�n��, ��〉7. r〈8�-��, ��〉7. r = Re �	g∗ 	e∗⁄ � s��n��, ����-��, ��s5 = .Re �	g∗ 	e∗⁄ �0�̂eg�̂eg∗                                        �12� 

 
The coefficientsl̂eg∗  and �̂eg∗ appearing in Equations (11) and (12) are, respectively, the complex conjugates 
of the complex Fresnel’s reflection and transmission coefficientsl̂eg and �̂egat such specifiedd-f interface 
which are already given in Equations (8) and (9).  

However, the final formulae of�eg and �egat the interface between the d- and f- media will be tangled 
if are expressed in terms of the real and imaginary parts of 	e and 	gupon explicit substitution of these 
complex Fresnel’s coefficientsl̂eg and �̂eg and their complex conjugates appear in Equations (11) and (12). 
For an obliquely-incident light plane wave, it can be shown that the �eg-expression of Equation (12) should 
also includethe proper real ratio of the complex angles of refraction and incidence at the interfacewhich are 
expressed, via the modified Snell’s law, in terms of 	e and 	g[9-17, 20-31,74-76]. But, it ismathematically 
more convenient and handy to write�eg and �eg at the interface ofthe d- and f- mediain much neater forms. 
This isattainedby re-writing Equations (8) and (9) in a way that l̂egand �̂egwill beexpressedin terms of 
realscalar reflection and transmission coefficientsteg and uegdefined asl̂eg ≡ teg exp��veg�and �̂eg ≡ueg exp��weg�, whereveg and weg are the associated real phase changes on wave reflection and 
transmission atthat interface [9]. Simple mathematical handling of Equations (8) and (9) enables one to 
express teg, ueg, veg andwegfor the normal-incidence case as well as tge, uge, vge�= veg� and wgeforopposite direction of light propagation,in terms ofthe refractive indices and extinction coefficients of 
the d- and f-mediaas 
 

teg5 ≡ tge5 = �	e − 	g�5 + ��e − �g�5
�	e + 	g�5 + ��e + �g�5 tan veg = 2 �	e�g − 	g�e��	e5 + �e5� − �	g5 + �g5 �                 �13� 
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ueg5 = 4 �	e5 + �e5��	e + 	g�5 + ��e + �g�5 tan weg = �	e�g − 	g�e��	e5 + �e5� + 	e	g + �e�g               �14� 

 

uge5 = 4 �	g5 + �g5 ��	e + 	g�5 + ��e + �g�5 tan wge = −�	e�g − 	g�e��	g5 + �g5 � + 	e	g + �e�g             �15� 

 
As will be seen later, Equations (13) – (15) will also be valuablein the formulations obtained from the 

coherent superposition of complex electric-field vector amplitudes of multiple internal reflections taking 

place within a thin layer of a multi-layered structure. Using the above-stated formulaeofteg5 , ueg5 , and uge5 , I 
can now write the expressions that describe the normal-incidence intensity reflection coefficient�eg(= �ge) 
and transmission coefficients�egand �geat the interface of the two contiguousd- and f- media as  
 

�eg = �ge ≡ teg5 = �	e − 	g�5 + ��e − �g�5
�	e + 	g�5 + ��e + �g�5                                                                                �16� 

 

�eg ≡ N	g	e P ueg5 = N	g	e P 4 �	e5 + �e5��	e + 	g�5 + ��e + �g�5                                                                       �17� 

 

�ge ≡ N 	e	gP uge5 = N 	e	gP 4 �	g5 + �g5 ��	e + 	g�5 + ��e + �g�5                                                                       �18� 

 
3. Optical response of multi-layered structures 
 

Normally, multi-layered optical systems consist of various dissimilar solid layers; with each layer has 
two interfacestoits adjacent layers. Theoretical expressions describing theoverall oblique-incidence 
reflection and transmission of a multi-layered structure arein general intricate,particularly when the structure 
hasstrongly absorbing layers that may also suffer from non-ideal features such as anisotropy, non-uniformity 
(in thickness and composition), andsurface roughness.The problem is less complicated when one deals 
withsimple optical systems such asthree- and four- layered structures,whereinthe layer from which light hits 
the structure isusually asemi-infinite transparent (dielectric) mediumand other layers may be madefrom 
optically absorbing and/or dielectric materials [9-17, 74-76]. Also, the problem becomesmuch lesstangled if 
a monochromatic light plane wave is incident normally on such layered structures and if the materials of 
their adjoining layers are linear, isotropic, homogeneous, and non-magnetic. Such a multi-layered structure 
isoften regarded to be an “ideal” optical system, the subject of our concern here.  

When the layers composing the structure are made from not strongly absorbing materials and surfaces 
are smoothand planeparallel, the light waves propagating insideeach layer willexecute multiple back and 
forth reflections from itsinternal opposite surfaces before exiting to nearby layers. Thus, to arrive atthe 
proper formulas that describe the total transmittance and specular reflectance of such a multi-layered optical 
system, oneought to take into account the contribution of the multiple internal reflections taking place in one 
or more of its layers. That is, one should sum over all the electric-field vectors and/or intensities of the 
individual reflected and transmitted light plane waves crossing the interfaces between the structure’s layers, 
in addition to taking into account the effect of possible light absorption inside individual layers.  

To achieve the proper summation electric-field vectors or intensities of the multiple internally reflected 
light wave-fronts within a layer (of a complex index of refraction 	 ≡ 	 − � κ) in a multi-layered structure, 
the coherencelengthdyof the incident beam of light having the wavelength �has to be, however,considered. 
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The light coherence length is determined by the light source and the finite spectral bandwidth (SBW)∆� of 
the monochromator used in the spectrophotometer giving the light beamstriking the structure. The coherence 
length of the light of the monochromator can be given by the relation: dy = �5/2{∆� [70, 71]. 

If the optical path length 	� through a layer of ageometricalthickness �and an index of refraction 	is 
much less than dyor ∆� ≪ �5/2{	�,the incident light beam issaid to be monochromatic with respect to the 
thin layer. Thus, interference between the light plane waves of internal multiple reflections taking place 
inside the layer cannot be ignored and their electric-field vectors shouldthen be summed to give the net 
reflection and transmission to its adjacent layers. This procedure is referred to as the coherent description of 
optical response of a multi-layered structure having a “coherent” thin layer. 

On the other hand, when the bandwidth ∆�is finiteand the optical thickness 	�of a layer is greater than 
the coherence length of the output light beamsuch that ∆� ≫ �5/2{	�, the phases of the multiple internal 
reflected waves are randomized and cannot interfere with each other. Hence, interference effects in this case 
can be completely tolerated, so light intensities and not electric field amplitudes of the multiple internally 
reflected/exiting light plane waves inside/outside this thick layer have to be summed to obtain its net 
reflection and transmission. This procedure is often known as the incoherent treatment of the optical 
response of thick layers. When a plane-parallel optically thin/thick layer is made from a conductive or 
optical absorbing material, the attenuation of each internally reflected light wave insidethe layer is 
significant and the contribution of light absorption to the overall optical response of the structure should thus 
be taken into consideration. 

To arrive at the fullformulaefor the total normal-incidence optical transmittance and specular 
reflectance of a four-layered structure, I should discussfirst the respectiveoptical reflection and transmission 
ofthree-layered structures. Depending on the optical thickness of its middle layer relative to the coherence 
length of incident light, the optical response of a three-layered structurehas to be treatedeither incoherentlyor 
coherently[4-17,20-31,73-76]. Moreover, if multiple reflections inside the middle layer of an “ideal” three-
layered structureoccur, one should get the expressions that describeitstotal transmittanceand specular 
reflectance when a monochromatic lightbeam entering its mid layeralong the opposite directions of light 
propagation. This will be useful in the treatment of optical response of structures comprising of four or more 
stacked layers.  
 
3.1 Optical transmittance and specular reflectance of three-layered structures  
 

In practice, three-layered structures areeither composed of aslabthat is fully embedded in air(freely air-
supported slab) or of a film laid onto a too thick absorbing substrate so thatno light will be transmitted out of 
the other substrate’sside or is reflected back towardits interface with the film. In the latter case, the front 
surface of the film is usually in contact with a semi-infinite layer of air. Such kind of three-layered structures 
can be imitatedas {layer 1/layer 2/ layer 3}-configuration, in which layer 1 is semi-infinite with a real index 
of refraction	kand a vanishing extinction coefficient�k; that is- 	k = 	k − �0. Layer 2 is aslab (or 
film)having a finite geometrical thickness �5 and a complex index of refraction 	5 = 	5 − ��5, whereas 
layer 3 is too thick or semi-infinite with a complex index of refraction 	~ = 	~ − ��~. This three-layered 
structure is schematically illustrated in Figure 1.  

Note that, in case of the dielectric-film-substrate optical unit, if layer 3(substrate) is plane-parallel 
transparent (�~ = 0)or is made of very weakly-absorbing material(�~~ 0) with a finite thickness, part of the 
light beam may be specularly reflected from its other surface backwardto layer 2 (film) and light absorption 
may also take place repeatedly insideit before the remaining part of the light beam is transmitted through its 
back surface to itsneighboring medium (assumed to be semi-infinite and thus no back reflections from the 
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far side of this last medium will take place); In view of the terminology of multi-layered structures in the 
present article,this multi-layered structureis anoptical four-layered structure and not a three-layered one.  

In the nextsub-section, I shall treat the normal-incidence optical response of an “ideal” three-layered 
structure (Figure 1), wherein layer 1 is semi-infinite and transparent and layer 3 is optically absorbing and 
thick enough,while itslayer 2 (slab or film) is optically thick (i.e., incoherent layer) and whose surfaces are 
smooth, homogeneous and plane parallel. In this case, the effect of interference between the back and forth 
internal specular reflections of the monochromatic light plane waves propagating through this layer will be 
neglected;hence, one canapply the incoherentoptical treatmentto obtain the netspectral transmittance and 
specular reflectance of this three-layered structure by adding the appropriate intensity reflection and 
transmission coefficients associated with all these multiple internally reflected light plane waves.  

When layer 2 of the above-specified “ideal” three-layered structure is instead optically thin (i.e., 
coherent film), the interference between the multiply reflected light waves occurring inside it ought to be 
taken into account and the problem should then be analyzed coherently, as will be discussed in later 
sections. Optical absorption taking place within layer 2 of the above-specified three-layered structure 
shouldbe accounted for in both of these incoherent and coherent treatments, in which the film or slab will be 
presumed linear, stationary, isotropic, inhomogeneity-free (both in composition and thickness) and non-
magnetic.  
 

 
 

Figure 1: Incoherent superposition of intensity reflection and transmission coefficients at the interfaces of 
an “ideal” three-layered structure. A collimated beam of light plane wavestravelling (from left) insidethe 
semi-infinite dielectric (transparent) layer 1 and having a single spectral wavelength � and an initial intensity �!���is incident normally onto the front surface of layer 2, with � ≡ exp^– �5�5_, where �5 and �5are the 

optical absorption coefficient and the geometrical thickness of layer 2, respectively. 
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3.1.1 Incoherent normal-incidencereflection and transmission of an optically absorbing thick 

layersandwiched between semi-infinite transparentand absorbing media 
 

A materialmedium whose optical, electrical,dielectric and magnetic properties are constant 
(homogeneous) throughout each plane perpendicular to a fixed direction (say the z-axis of a Cartesian 
coordinate system) is called a stratified medium [9]. Now, considerthree dissimilar stratified media (layers) 
that are piled in close contact with each other to form the“ideal” three-layered structure illustrated in Figure 
1. Let layer 2 to be optically thick with a geometrical thickness �5 and to have smooth,homogeneous, and 
plane-parallel surfaces. Assume a beam of monochromatic plane light wave of a spectral wavelength λ and 
initial intensity �!�λ�travellingfrom left insidethe semi-infinite transparent layer 1 to be incident normally 
onto the front surface of layer 2. Neglectthe interference between the plane light waves of the back and forth 
reflections taking place at the internal surfaces of layer 2 and employ the incoherent analysis to treat 
itsoptical reflection and transmissionto its neighboring media (layers 1 and 3). It will be assumed that the 
plane light waves entering the semi-infinite layers 1 and 3 do not reflect back from their far sides. 

Taking into account optical absorption within layer 2, characterized by the absorption parameter � ≡ exp^– �5�5_, the algebraic sum of light intensities of all multiply reflected and transmitted waves from 

the “ideal” three-layered (123-) structure of Figure 1 will yieldtwo compact formulae that describe fully its 
total normal-incidence transmittance �k5~�λ�and specular reflectance �k5~�λ�given by [13, 21, 24, 26, 76] 
 �k5~�λ� = �k5 +  ��k5����5~����5k� +  ��k5����5~����5k����5~����5k�+  ��k5����5~����5k�5~�5�5��5k� + ⋯  
                = �k5 + ��k5�5~�5k� � �5���5k�5~�� �k

� � ∞
� � k

= �k5 + ��k5�5~�5k��5
1 − �5k�5~�5                    �19� 

 �k5~�λ� = ��k5����5~� +  ��k5����5~����5k����5~� +  ��k5����5k�5~�5�5��5~� +  … 

               = ��k5�5~� � �5��k��5k�5~�g �k
� � ∞
� � k

= ��k5�5~� �1 −  �5k�5~�5 �20� 

 
For light propagating in the medium l (m) and normally incident at the interface to the medium m (l), 

the intensity reflection coefficients�egand �ge and the intensity transmission coefficients �egand �gecan be 
evaluated from Equations (16) – (18).  

For the three-layered structure specified in Figure 1, Equations (13) – (15) can be used to obtain the real 
scalar reflection and transmission coefficients teg, tge, ueg, uge and associated phase changes on reflection 
and transmission veg�= vge�, weg, and wge along opposite directions of light propagation through the 
interfacesof each pair of its adjacent layers. The required formulasthat describe these parameters are given 
below  
 

tk55 = t5k5 = �	k − 	5�5 + �55�	k + 	5�5 + �55 tanvk5 = − 2 	k�5�	55 + �55� − 	k5                         �21� 

 

uk55 = 4 	k5�	k + 	5�5 + �55 tanwk5 =  �5	k + 	5                                             �22� 
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t5~5 = t~55 = �	5 − 	~�5 + ��5 − �~�5
�	5 + 	~�5 + ��5 + �~�5 tanv5~ = 2 �	5�~ − 	~�5��	55 + �55� − �	~5 + �~5�                �23� 

 

u5~5 = 4 �	55 + �55��	5 + 	~�5 + ��5 + �~�5 tanw5~ = 	5�~ − 	~�5�	55 + �55� + 	5	~ + �5�~             �24� 

 

u5k5 = 4 �	55 + �55��	k + 	5�5 + �55 tanw5k = − 	k�5�	55 + �55� + 	k	5                        �25� 

 

u~55 = 4 �	~5 + �~5��	5 + 	~�5 + ��5 + �~�5 tanw~5 = − 	5�~ − 	~�5�	~5 + �~5� + 	5	~ + �5�~         �26� 

 
It will be seen later that the formulas expressed in Equations (21) – (26) areof great value in the discussion 
of the optical response of “ideal”four-layered structures incorporating an optically transparent or absorbing 
thin “coherent” film laid onto atransparent or partially-absorbing “incoherent” substrate of finite thickness.  

In practice, it is common to express the general Equations (19) and (20) that describe the 
netincoherentnormal-incidence spectral transmittance and specular reflectance of the “ideal” three-layered 
structure illustrated in Figure 1 in terms of the optical constants of its three layers, viz., 	k, 	5, 	~, �5, �5 
and �~. This can be accomplished by re-writing Equations (16) – (18)explicitly in terms of these optical 
constants to obtain the respective expressions thatdescribethe incoherentnormal-incidence intensity 
reflection and transmission coefficients at each interface of its layers for both directions of light propagation 
through each interface as given below. 

�k5 = �5k ≡ tk55 = �	k − 	5�5 + �55�	k + 	5�5 + �55                                                                                                     �27� 

 

�5~ = �~5 ≡ t5~5 = �	5 − 	~�5 + ��5 − �~�5
�	5 + 	~�5 + ��5 + �~�5                                                                                     �28� 

 

�k5 ≡ N	5	kP uk55 = 1 − �k5 = 4 	k	5�	k + 	5�5 + �55                                                                                    �29� 

 

�5k ≡ N	k	5P u5k5 = N	k	5P 4 �	55 + �55��	k + 	5�5 + �55                                                                                              �30� 

 

�5~ ≡ N	~	5P u5~5 = N	~	5P 4 �	55 + �55��	5 + 	~�5 + ��5 + �~�5                                                                             �31� 

 

�~5 ≡ N	5	~P u~55 = N	5	~P 4 �	~5 + �~5��	5 + 	~�5 + ��5 + �~�5                                                                             �32� 

 
Now, let us utilize Equations (19) and (20) to express the totalincoherentnormal-incidencespectral 

transmittance and specular reflectance of some meek three-layered structures of practical importance in the 
field of optics. This is discussed in the following sub-sections.  
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3.1.1.1Optically thick dielectricslab bounded by twosemi-infinite transparent media  
 

A three-layered structure of practical interestis whoselayers 1 and 3 of Figure 1 are semi-infinite, 
transparent (�k = �~ = 0)and haverefractive indices	kand 	~, and whose layer 2is a dielectric slab (	5 =	5, �5 = 0, �5 = 0and � = 1), which is thick enough for the multiple reflected plane light waves within it 
to interfere coherently. Then �k5 = �5k = 1 − �k5, �5k = �k5and Equations (19) and (20) reducetothe much 
simpler forms  
 

�k5~�λ� = �k5 + �5~ − 2 �5k�5~1 − �5k�5~ �33a� 

 

�k5~�λ� = �5~�1 − �k5�1 −  �5k�5~ �33b� 

An example of this simple three-layered structureis an opticallythick dielectric slab sandwiched 
between two identicaltransparent media,like, for instant, a thick unsupported (free-standing) glass slide 
placed in air (	k = 	~ = 1). Then, in thefree-absorption (�5 = 0) spectral region of such an air-supported 
glass slide, Equations (27) – (32) yield�5k = �5~ = �~5 = �k5and �5k = �5~ = �~5 = �k5 = 1 − �k5, with �k5 and �k5given by 
 

�k5 = �1 − 	5�5
�1 + 	5�5 �k5 = 4	5�1 + 	5�5                                    �34� 

 
Consider an optically thick transparent, homogeneousglass slab of aconstant real index of refraction 	5 

= 1.5and vanishing extinction coefficient (�5 = 0),with smooth (polished) andplane-parallel surfaces. 
Equation (34) tells us that the intensity reflection and transmissioncoefficients�k5and �k5at any of its 
interfaces to the neighboring semi-infinite air layers are equal to 0.04 and 0.96, respectively, which sum to 
unityprovided that scatter losses are being ignored. 

Inserting the intensity reflection and transmission coefficients given in Equation (34) into Equations 

(33a) and (33b), the total normal-incidence incoherentspectral transmittance �k5~�λ� = �����λ�and specular 

reflectance �k5~�λ� = �����λ�of a transparent glass (g)slide standing freely in vacuum (v)and having an 

index of refraction 	��λ� can now be givenby the simple formulae 

 

�����λ� = 2�k51 + �k5 = ^	� − 1_5
	�5 + 1                                                                                                            �35a� 

 

�����λ� = �k551 −  �k55 = 1 − �k51 +  �k5 = 2	�	�5 + 1 �35b� 

 

Equations (35a) and (35b) yieldthe numerical values 0.07692 and 0.92308for the �����λ�and �����λ�for an 

air-supported transparent glass slidewith aconstantindex of refraction 	��λ� = 1.5, implying that �����λ� + �����λ� = 1 as conservation of total energy tells us, provided that losses due to scatter at its 

surfaces and optical absorption throughout its bulk are insignificant.In the spectral wavelength range where 
they are feasible,Equations (35a) and (35b) are usually employedto determine the values of 	�(�) of a free-

standing non-absorbing optically thick glass slide from the measured values of its total normal-incidence 
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transmittance ����or specular reflectance ����at the wavelength �by making use the following simple 
expression 
 

	���� = 1���� + �� 1�����5 − 1 = 1 + L����.2 − ����01 − ����                                                                �36� 

 
Equations (35a), (35b)and(36) can also be applied to many “ideal” three-layered structures having the 

{air/thick dielectricslab/air}-pilingat each spectral wavelength �in wavelength range of the electromagnetic 
spectrum over which the slab’s material is highly optically transparent. In the case of a thick dielectric slab 

made from weakly dispersive material, the measured values of its�����λ�and �����λ� would be almost 

constant at all spectral wavelengths in the transparent region and itsreal index of refraction is thustaken to be 
wavelength-independent; that is, 	5��� =constant. This might be workableforordinary thick glass slides and 
quartz wafers over the upper part of the ultraviolet (UV) radiation, in addition to the visible (VIS) and near 
infrared (NIR) spectral regions. Theseexpressions cannot, however, be used for describing the optical 
response of a three-layered structure in the spectral region where the optical absorption and dispersion of the 
slab’s material aresignificant. In such cases, one must thereforerevert to the full formulaecontaining all 
material’s optical parameters underlined in Equations (19) and (20), in conjunction with Equations (27) – 
(32), to attain a complete description of the problem, as is detailed below.  
 
3.1.1.2Air-supported optically thick absorbing layers  
 

Another practical three-layered structure is a thick layer made from a linear, isotropic, homogeneous, 
nonmagnetic and optically absorbing material, with the layer being standing freely in air; that is- an air-
supported slab ofcomplexrefractive index 	5 = 	5 − ��5,an absorption coefficient �5 ≡ 4π�5 λ⁄ and a 
geometrical thickness �5 larger than the coherence length of the monochromatic light beam striking 
it.Assuming that the surfaces of this free-standing absorbing layerare smooth and plane parallel, the 
completetheoretical expressions that describe itstotal incoherentnormal-incidence spectral 
transmittance�k5~�λ�andspecular reflectance �k5~�λ�caneasily be shown, by making use of the general 
Equations (19) and (20), to have the following forms 
 

�k5~�λ� = �k5 + �k5�5~�5k��5�R�R1 − �5k�5~��5�R�R �37a� 

 

�k5~�λ� = �k5�5~�� �R�R1 − �5k�5~��5�R�R �37b� 

Since, for the above-described {air/thick absorbing slab/air}-structure 	k = 	~ = 1, �k = �~ = 0, 	5 > 1, 
and �5 ≠ 0, the intensity reflection and transmission coefficients at the two plane-parallel slab’s interfaces 
to air, for both directions of normal-incidence light propagation, will now have, by making use of Equations 
(27) – (32), the following forms     
 

�k5 = �5k = �5~ = �~5 = �	5 − 1�5 + �55�	5 + 1�5 + �55                                                                                          �38a� 
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�k5 = �~5 = 1 − �k5 = 4 	5�	5 + 1�5 + �55                                                                                                �38b� 

 

�5k = �5~ = N 1	5P 4 �	55 + �55��	5 + 1�5 + �55 = �k5 �1 + �55	55� ≠ �k5                                                               �38c� 

 
For the sake of convenient later discussion, let us designate the slab (film) by the symbol (f) and air 
(vacuum) by the symbol (v). Further, renaming the reflection and transmission coefficients �k5 and �k5 at 
the air-film (vf-) interface by ��� and ��� (= 1 − ���), respectively, and the slab’s total spectral normal-
incidence transmittance �k5~�λ� and specular reflectance �k5~�λ� by �����λ�and �����λ�, respectively. Insert 
Equations (38a) – (38c) into Equations (37a) and (37b) to get more compact and informative forms as 
follows  
 

�����λ� = ��� + ��� �1 − ��� �5 �1 + �RR�RR� ��5�R�R
1 − ���5 ��5�R�R                                                                      �39� 

 

�����λ� = �1 − ����5 �1 + �RR�RR� ���R�R
1 − ���5 ��5�R�R �40� 

 
The intensity reflection coefficient ��� at the air-film interface upon which light is normally incident from 
the leftof the air-supported film (hereafter is called the forward direction of light propagation) is now given, 
in terms of the film’s optical constants 	5and �5, by the expression  
 

��� = �	5 − 1�5 + �55�	5 + 1�5 + �55                                                                                                                                �41� 

It should be emphasized here that Equations (39) and (40) were rarely reported [11, 78] and are often cited 

in the literature without the term �1 + �55 	55⁄ � [24, 26, 79, 80], implicitly assumed that the thick slab is 

weakly absorbing such that �55 	55 ≪ 1⁄ in certain range of spectral wavelengths.  
As a consequence of the multiple internal reflections within an air-supported thick plane-parallel slab 

made from optically-absorbing material, the slab’s transmittance given by Equation (40) is notin direct 
proportion to exp  �−�5�5�as implied bythe simple Lambert-Beer law,which describes the attenuation of 
light travelling once throughan isotropic,homogenous sample. This is because part of the incident light wave 
traverses the slab back and forth several times corresponding to an increase in the effective optical path 
length inside it, and hence gives rise to more optical absorption within its bulk.Lambert-Beer behavior of 
transmittance is only expected for a free-standing absorbing slab if the intensity reflection coefficients at its 
interfaces to air (here���) are low.One should retain here, that the Lambert-Beer law applies well to bulky 
liquid samples, but is generally notvalid forabsorbing films of smooth, homogenous and plane-
parallelsurfaces; it has, however, to be stated that Lambert-Beer law is oftenusedin the analysis of most 
literature work on filmswith fairly largeintensity reflection coefficients at itsinterfaces.  

An issue that deserves to mention at this stage is the procedure of analyzing the measured data of the 
total spectral transmittance ��λ�and specular reflectance ��λ�of three-layered and other multi-layered 
structures to determine their optical parameters, namely their 	�λ� and ��λ� or ��λ� (≡ 4π��λ� λ⁄ ). In 
general, 	�λ� and ��λ� of a semiconducting or dielectric film (slab) are varying functions of wavelengthλ; 
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that is- the material of a slab or film possessing this feature is regarded to be dispersive, and the dependence 
of its optical parameters on the wavelength of the electromagnetic radiation incident onto it must be taken 
into account in a complete optical analysis.  

In the simplest case of a thick air-supported dielectric slab (�5�λ� = 0), Equation (36) in the spectral 
range of its validity can directly be applied to calculate	5�λ� from the respective values of its ��λ�or��λ�. 
In contrast, however, for a thick air-supported optically-absorbing slab, analytical solution of the normal-
incidence theoretical ��λ�- and ��λ�- expressions given in Equations (39) and (40) to calculate directly its 
optical constants 	5�λ� and �5�λ� at each individual wavelength λis not possible. Only in partially-absorbing 
slabs standing freely in air where the approximation {�5�λ� 	5�λ�⁄ < 1} is valid, one can be able to solve 
analytically these formulas to express 	5�λ� and �5�λ� in terms of ��λ� and ��λ� [80]. Otherwise, one has 
to revert to conventional numerical and curve-fitting procedures to determine the dispersion of optical 
constants of a thick air-supported optically-absorbing slab. To implement such kind of numerical 
analysis,the proper expressions which represent thewavelength dependence of its optical parameters 	5�λ� 
and �5�λ�[1-25, 74-77] over the spectral range studied should be inserted into Equations (39)- (41).  

However, conventional curve-fitting procedures often result in multiple solutions with 
differentandsometimes illusiveor unrealistic values for the fitting parameters, unless a global solution is 
being accomplished; thus, complementary results (from different measurements) are needed for comparison 
purposes. Nevertheless, one normallyemploys some justified approximations tofacilitate analysis and 
numerical computation of the measured optical data without losing the physical meaning and accuracy of the 
output results. Even so, accurate analysis of experimental optical data of multi-layered structures will be 
much intricate such that reliable and sophisticated computational and curve-fitting procedures should thus to 
be employed. 
 
3.1.2 Coherent transmissivity and specular reflectivityof multi-layered structures 
 

The above-discussed optical approach based on the incoherent superposition of transmitted and 
specularly reflected light intensities of multiple back and forth internal reflections at the opposite interfaces 
of a homogeneous plane-parallel layer with its surrounding media (layers) is correct only if the optical 
thickness of the layer is much greater than the coherence length of lightdy or ∆� ≫ �5/2{	�. However, the 
light interference between such internally reflected waves inside the layer cannot be tolerated whenthelayer 
is sufficiently thin such that itsoptical thickness is smaller than or comparable to the coherence length of 
incident light incident-that is, ∆� ≪ �5/2{	�. In this case, one cannot simply add the scalar intensities of 
the individual light plane waves reflected back and forth from its opposite surfaces to get itstotal 
transmissivity (transmittance) and specular reflectivity (reflectance). 

In principle, interference-fringe maxima and minima are supposed to be superimposed on the fringe-
free transmittance and specular reflectance spectra for ideal optical structures composed of any number of 
stacked thin stratified layers. Only under some conditions, however, interference-fringe fingerprints 
(maxima and minima) may be seen in the measured overall transmitted and specularly reflectedlight signals 
of an optically thin film (slab) standing freely in air. Moreover, the above-cited interference features are 
frequentlyobserved in experimental transmission and specular reflection of ahomogeneous plane-parallel 
dielectric or semiconducting optically thin film which is deposited ontoa thick optically transparent or 
absorbing substrate of different physical properties. 

In the following sub-sections, I shall therefore discuss in detail the coherent treatment of the optical 
response of sufficiently thin layers to enlighten most of the expected characteristics of their transmittance 
and reflectance spectra. Later, I will combine both of the incoherent and coherent analysis to obtain the full 
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formulae that describe the spectral transmittance and specular reflectance of thin dielectric or optically 
absorbing films which is intimately laid onto much thicker substrates.  
 

3.1.2.1Theoretical approaches for coherent description of transmittance and specular reflectance of 

optically thin layers  
 

A variety of mathematical approaches were proposed to derive the general formulae forthe 
transmittance and specular reflectanceof multi-layered structureshaving a stack of thin dielectric or 
conducting layers onto which amonochromaticlinearly-polarized light plane wave is incident. One of these 
methods is entailed in the comprehensive optical theorythat is described by Born and Wolf [9] and by Potter 
[10]. Some features of this theory are relevant in the discussion given in the present article and hence will be 
briefly outlined here. Thisoptical theory is based on the reduction of the coupled Maxwell first-order partial 

differential equations in ����, ��- and ����, ��- fields of thelight wave propagating into a stratified mediumto a 
set of second-order partial differential equations, which can be solved, subjected to apt boundary conditions, 
to get a generaltwo-by-two unimodular matrixcharacteristic of the medium.Its basic formulations are equally 
applicable to both transverse electric (TE) and transverse magnetic (TM) lightplane waves propagating into 
the medium along aroutemaking a non-zero angle to its direction of stratification. 

It deserves noting here that thes- and p- polarized light plane waves whose ����, ��-vectors be 
everywhere perpendicular and parallel to the plane of incidenceare referred to asTE and TM waves, but in 
the sense we still describe a transverselight wave travelling through open regions. Consequently, any 
arbitrarily polarized lightplane wave incident on a multi-layered structure can be resolved into two plane 
waves: one is TE and the other isTM. This classification of TE and TM light plane waves is notas that 
adoptedin guided regions of specific structures (wave guides), where these acronyms have totally different 
meanings [4-10, 20-24, 74-76].  

Moreover, as boundary conditions at a discontinuity surface for the ����, ��- and ����, ��- 
componentsperpendicular and parallel to the plane of incidence are independent of each other; the TE and 
TM light plane waves will also be mutually independent. Further, for a linear and isotropic medium deficient 
of external electric charges and current sources, Maxwell’s equations remain unchanged when one re-writes 

them with����, �� = ]���, �� I⁄  andZ���, �� = ����, ��/J and simultaneouslyI and−Jare interchanged, where I 
and Jare, respectively, the permittivity and permeability of the medium.Therefore, any optical theorem for 
TM plane waves may be deduced from the results obtained for TE plane waves using this change, and soit 
willbe sufficient to discuss the case of TE lightplane waves only. Thegeneral matrix optical theory [9, 
10]can be utilized to derivethe expressions that describe transmittance and specular reflectance of multi-
layered structures of linear, thindissimilar stratified layers onto which amonochromatic TE- or TM- 
lightplane wave is impinging at an arbitrary angle of incidence. 

A less involved but informative methodology,called the coherentamplitude superposition treatment of 
the oblique-/normal-incidence multiple internal reflections taking place inside a linear, isotropic, and 
homogeneous plane-parallel thin film, is also discussed in some articles and books of electrodynamics and 
optics [16, 17, 20-24, 26, 28,74-76]. In this optical approach, one can add the Fresnel’scomplex amplitude 
reflection and transmission coefficients of all individual reflected and transmitted light plane waves 
modulated by a phase change upon its each single traversal inside the film. The obtainednet complex 
amplitude reflection and transmission coefficients canthen be used to find the formulaeofthe 
overallstructure’s transmissivity and specular reflectivity.Though this coherent descriptionworks well for 
multi-layered structures incorporating a quite small number of piled thin layers, it is, however, cumbersome 
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and inconvenient for analysis of the optical response of a stack of a large number of thin layers, and I will 
not here discuss this approach further. 

Other less popular approaches like, for example, those based on the so-called single graph theory [51-
53] and impedance-matching method [11] have been also recommended for treating the optical response of 
coherent layers. Also, these optical approaches will not be discussed here further and interested readers can 
consult the above-cited references for more details.  

Anotherinstructiveapproach, called the method of resultant plane waves or the ��– ��transfermatrix 
method[20-23, 29-33, 76], can efficiently be employed to treat the optical response of multi-layered 
structures of any number of thin films tomonochromatic TE (or TM)light plane waves, whether the wave is 
obliquely- or normally- incident on the structure.Based on some constructivepoints relevant to this ��– ��transfer matrix method, which will be of prime concern of the present article, the general formulas that 
describe the optical response of multi-layered structures can be derived in a directand simple manner.  

The essential features of the��– ��transfer matrixmethod and the relatedgeneral formulations that lead 
to the derivation ofthe totalspectral transmittance ��λ�and specular reflectance ��λ�of a stack of 
severaldissimilar thin layers bounded by semi-infinite transparent mediaare detailed in Appendix B. In the 
next sub-sections, I shall discuss in some detail the basic formulations and physics behind this optical 
method that enable one to derive the normal-incidence��λ� and ��λ�expressions for describing the optical 
response of an “ideal” three-layered structure composing of athin dielectric (transparent) or optically-
absorbing layer (film) sandwiched between two optically thick layers. The obtained formulations of ��λ� 
and ��λ� of the latter specified three-layered structure will be compared with their respective expressions 
that are reported in the literature or derived by others using different approaches.  
 

3.1.2.2The general ��-�� transfer matrix formulae for the total transmission and specular 

reflectioncoefficientsof multi-layered structures 
 

For a monochromatic s-polarized (TE) plane light wave,the ��– �� transfer matrix method for a stack 
of � successive layers separated by � − 1smoothand plane-parallel interfaces, with the layers index � = 1, 2, 
3, 4 ……,can be described by asingle general matrix equation of the form 
 

����k���k� = � ����������                                                                                                                                       �42� 

 

As discussed in Figure B1, the fields ���k and ���kare, respectively, the electric field components of the TE 

plane light wave travelling through and reflected from the first (incident) layer. The fields ���� and ����are, in 

that order, the electric field components of light plane waves transmitted into and reflected from the final 
(last) layer of the �-layered stack.  

The transfer matrix �, which is referred to as the characteristicmatrix of thewhole�-layered structure, 
for the�� − 1� interfaces separating thesuccessive � layers, including the first layer from which the light 
plane wave is being incident onto the front surface of thesecond layer (� = 2), can be evaluated from the 
general expression 
 � ≡ ��k ∘ ¡�5 ∘ ��5 ∘ ¡�~ ∘ ��~ ∘ ¡�¢ ∘ ��¢ ∘ … … … … … … ∘ ��£�5 ∘ ¡�£�k ∘ ��£�k                                        �43� 
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The matrix ��¤, which involves the complex Fresnel’s reflection and transmission amplitude coefficients l̂-(≡ l̂-,   -�k) and �̂- (≡ �̂-,   -�k)at the ith-interface of the dissimilar ¥and ¥ + 1stacked layersis given by the 

formula  
 

��- = N1�̂-P N1 l̂-l̂- 1P                                                                                                                                    �44� 

 

Further, the transmission matrix ¡�¤ is defined as 
 

¡�- = N�£¦�§    00 ��£¦�§P                                                                                                                                 �45� 

 
Now, let a monochromatic light plane wave of a specificangular frequency ω (or a discrete wavelength λ) to imping onto an interface of the ¥th-layer at an angle of incidence θ� ¤, and this layer has a geometric 

thickness �¤ and a complex index of refraction 	¤ = 	¤ − ��¤. The complexphase-change angle©(¤ produced 

upon a single traversal of the light plane wave in thisith-layer is given by ©(¤ ≡ Re ©(- − � Im ©(- =�¤�ω 2⁄ �	¤ cos θ�¤ = �2 π�¤ λ⁄ �. �¤ − �®¤�, where ¤ and ®¤ are real quantities that are, respectively, equal to 	¤ and �¤ at normal incidence (θ�¤ = 0)[9, 76].The imaginary part Im ©(- of ©(- is often incorporated in the 
optical absorption terms appearing in the formulas of the total intensity of reflected and transmitted light 

signals produced by an optical system. On the other hand, the real part Re ©(-of ©(-will be responsible for both 
the interference between the light plane waves reflected back and forth from the internal surfaces of the 
layer andoptical absorptionof these internally reflected waves.  

To proceed further in the derivation of the total transmittance and specular reflectance of acertain�-
layered stack, it may be more convenient to evaluate separately the specific characteristic matrix ¯ ≡ ¡ ∗�for each of its�� − 1� layers following the first (incident) layer. The first layer of most practical multi-
layered structures is normally a semi-infinite linear, isotropic, stationary, homogeneous, nonmagnetic, and 
non-absorbing (transparent) mediumwith a real constant index of refraction, or in particular air. To be more 
precise, Ishall assign the characteristicmatrix¯- ≡ ¡-�-for each ith-layer of this �-layered stackwith the 
index¥ ≥ 2; thus, thematrix¯-can be expressed in a simple manner as described below  
 

¯- ≡ ¡-�- =  N1�̂-P � �£¦�§ l̂-�£¦�§
l̂-��£¦�§ ��£¦�§ �                                                                                                      �46� 

 
In terms of the characteristic matrix ¯-of the individual mid layers of the �-layered structure, Equation (43) 
of the characteristic matrix � of the entirestructure can now be re-written as  
 

� ≡ ��k ∘ ± ¯¤
¤ � £�k

¤ � 5
                                                                                                                                    �47� 

 
Now, let us define the net electric-field amplitude specular reflectionl̂²³nand 

transmission�̂²³ncoefficients, relative to the amplitude of the electric-field of the incident monochromatic TE 
light plane wave,of the wholemulti-layered stack by the following identities 
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l̂²³n ≡ ���k���k                                                                                                                                                        �48� 

 

�̂²³n ≡ �������k                                                                                                                                                        �49� 

 
It is worth noting here that the general matrix formula given in Equation (42),together with Equations 

(46) and (47), can now be employed to derivethe full expressions that describe these complex specular 
reflection l̂²³nand transmission �̂²³n coefficients of a �-layeredstructure, and hence its totalspectral 
transmittance and specular reflectance.  
 
3.1.3 Derivation of the total transmittance and specular reflectance of stratified three-layered 

structures from the ��– �� matrix formulations  
 

Let usnow apply the above-discussed results of the ��– ��matrix method to evaluate the matrix 
formulae for athree-layered stack of dissimilar ponderable linear, isotropic, homogeneous and nonmagnetic 
media. The first medium is presumed to be a semi-infinite and transparent dielectric (�k = 0)layer of a 
purely real index of refraction 	k = 	k. To simplify the problem further without affecting the desired 

formulations,letthe lastlayer of thestructure to be thick enough, so one can put ���� ≡ 0 in the matrix 
Equation (42).In the next sub-sections, the ��– �� matrix formulations will be utilized to derivethe proper 
formulasfor the total normal-incidencetransmittance and specular reflectance of three-layered structures 
made from a plane-parallel stratified dielectric (orabsorbing)thin filmsandwiched between two dielectric 
(transparent) media.  

The ��– �� matrix analysis will be carried out for both directions of the light plane wave 

propagatingin the filmand the attainedexpressions, combined with the above-derived formulae of incoherent 
normal-incidence reflectivity and transmissivity of a thick slab, will then be used to derive the 
fullformulaethat describe optical response of a four-layered structure made of a thin film laid onto a thick 
dielectric substrate, with this film-substrate unit being immersed in air.  
 
3.1.3.1 Case of a thin dielectric film sandwiched between two semi-infinite dielectric media  
 

Let a stratified dielectric thin slab (layer 2), of finite thickness �5 and a real index of refraction 	5, to be 
sandwiched between two dissimilar semi-infinite dielectric media (layers 1 and 3)with the real indices of 
refraction	k and 	~ (≠ 	k or 	5), respectively. In the terminology of the above-described ��– �� matrix 
optical approach, � = 3 (two interfaces)for such athree-layered structureand its characteristics matrix � = �k¯5, with¯5 ≡ ¡5�5. As layer 2 is a thin transparent film, inside which interference of multiply 

reflected light plane waves occurs with no light absorption upon traversing back and forth, ©(5 is a purereal 

quantity. Thus, for anormal-incidence TE plane wave of wavelength λ, ©(5 = Re ©(5 = 2π	5�5 λ⁄ ≡ v5 2⁄  as 5 = 	5 and ®5 = �5 = 0 for ḱ = 0o[9, 76] and the terms �± £ µ³ ¦�Rin Equation (46) haveno damping effect 
on light intensity. Further, asno light waves are reflected from the backside of the semi-infinitelayer 3, one 

can set���� = 0and ���� = ���~; So, Equations (42) and (47) yielda simple matrix equation of the form  
 

����k���k� = �k¯5 N����0 P = N 1�̂k�̂5P N 1 l̂kl̂k 1 P � �£¦�R l̂5�£¦�R
l̂5��£¦�R ��£¦�R � N���~0 P 
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           = 1�̂k�̂5 �&�£¶R 5⁄ + l̂kl̂5��£¶R 5⁄ , &l̂k��£¶R 5⁄ + l̂5�£¶R 5⁄ ,&l̂k�£¶R 5⁄ + l̂5��£¶R 5⁄ , &��£¶R 5⁄ + l̂kl̂5�£¶R 5⁄ ,� N���~0 P 

 

       = N 1�̂k�̂5P �&�£¶R 5⁄ + l̂kl̂5��£¶R 5⁄ ,���~&l̂k�£¶R 5⁄ + l̂5��£¶R 5⁄ ,���~�                                                                                    �50� 

 
Equations (48) - (50) can now be utilizedto find the expressions that describe thenetcomplex reflection 

and transmission coefficientsl̂²³n and�̂²³nof this all-dielectric 123-layered structure, when a monochromatic 
TE light plane waveis propagating in the semi-infinite transparent layer 1 and is normally incident(from left) 
onto the thin mid layer 2 (dielectric slab). The required results are expressed by the following formulae  
 

l̂²³n = l̂k5~ ≡ ���k���k = l̂k + l̂5��£¶R
1 + l̂kl̂5��£¶R                                                                                                        �51� 

 

�̂²³n = �̂k5~ ≡ ���~���k = �̂k�̂5��£¶R 5⁄
1 + l̂kl̂5��£¶R                                                                                                        �52� 

 
Other workers [29-33] have briefly implemented the ��– �� matrix approach, which is, however, 

discussed in more shining auxiliary details by the present author.As implied in Equations (A3) and (A4), the 
notation given to the complex reflection and transmission coefficients at the respective interfaces of this 
simple three-layered structure means explicitly that l̂k ≡ l̂k5, l̂5 ≡ l̂5~, �̂k ≡ �̂k5, and �̂5 ≡ �̂5~. Further, from 
the previous discussion given in section (2), one can re-cite here that l̂eg ≡ ρeg exp��ϕeg� and �̂eg ≡τeg exp��χeg�, with the parametersρeg, τeg, ϕeg, and χeg have their usual meaning defined there; So, l̂k5l̂k5∗ ≡ tk55 , �̂k5�̂k5∗ ≡ uk55 , where l̂eg∗ and �̂eg∗  are the complex conjugates of l̂eg and �̂eg, respectively. 

By puttingκ5 = κ~ = 0andϕk5 = ϕ5~ = χk5 = χ5~ = 0 in Equations (21) – (24) and inserting ρk5, ρ5~, τk5 and τ5~ in Equations (51) and (52), onecan then geta couple of formulaefor the totalnormal-incidenceTE 
transmittance ����and specular reflectance ����of thisall-dielectric three-layered (123-) structureof the 
forms[9] 
 

���� = �k5~ ≡ l̂k5~l̂k5~∗ = tk55 + t5~5 + 2tk5t5~ cos ϕ51 + tk55 t5~5 + 2tk5t5~ cos ϕ5                                                                 �53� 

 

���� = �k5~ ≡ 	~	k �̂k5~�̂k5~∗ = 	~	k
uk55 u5~5

1 + tk55 t5~5 + 2tk5t5~ cos ϕ5                                                       �54� 

 

Recall that the angle parameterv5 is given by v5 = 2 Re ©(5 = 4π	5�5 λ⁄ .  
Now, let us find the expressions for the corresponding overall phase changes on reflection¼/ and 

transmission ¼n from such a thin parallel-plane dielectricfilm bounded by two dissimilar semi-infinite 
dielectricmedia. These expressions can readily be achievedfrom Equations (51) and (52) by re-writing the 
complexspecular reflection coefficient l̂k5~ and thecomplex transmission coefficient �̂k5~in a polar form 

asl̂k5~ ≡ |l̂k5~|e£¾¿ and �̂k5~ ≡ |�̂k5~|e£¾À[9] and using the above-cited notation for l̂k, l̂5 etc., viz.  
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tan ¼/ ≡ tan�arg l̂k5~� = − t5~�1 − tk55 � sin v5tk5�1 + t5~5 � + t5~�1 + tk55 � cos v5                                                  �55� 

 

tan ¼n ≡ tan�arg �̂k5~� = − 1 − tk5t5~1 + tk5t5~ tan�v5/2�                                                                          �56� 

 
Equations (53) and (54) that describe thenormal-incidence TE transmittance and reflectance of an all-

dielectric three-layered structurecan also bereached by using the coherent description of its optical response 
via summing the Fresnel’s complex amplitude reflection and transmission coefficients of light waves 
reflected and transmitted fromthe opposite internal interfaces of its mid layer to adjacent media [20-23, 26-
33, 76] and from other different approaches [9-11, 51-53]. 
3.1.3.2Case of a thin optically-absorbingslabbounded by two semi-infinite dielectric media 
 

Now, consider the case of a three-layered structure composing of an opticallythin stratifiednonmagnetic 
optically-absorbingslab (layer 2)that has smooth, homogeneous and plane-parallel surfaces and a complex 
index of refraction 	5 ≡ 	5 − ��5 and which is bounded by semi-infinitestratifiednonmagnetic 
dielectriclayers 1 and 3 having unlikereal indices of refraction 	k and 	~(≠ 	5) and vanishing extinction 
coefficients (�k = �~ = 0).  

The optical analysiscarried out for theall-dielectric 123-structuredescribed in the previous sub-section 
shouldnow be modified to take into consideration not only the effect of interference between the reflected 
light plane waves inside the thin absorbing slab (film) of the above-specified {semi-infinite dielectric layer 
1/thin absorbing layer 2/semi-infinite dielectric layer 3}-structureand but also the light absorption upon each 
singletraversal of these reflected waves.  

To analyze the optical response of the latter three-layered structure case, let a monochromatic TE light 
plane wave to be incident normally from the semi-infinite dielectric layer 1 atits interface to the absorbing 
thin layer 2 (film),inside which back and forth light wave reflections and optical absorption are both taking 
place and from which part of these multiply intensity-decayed reflected waves will eventually be transmitted 
to both of the semi-infinite dielectric layers1 and 3. These two phenomena are embodied in the phase change 
produced upon the passage of the light wave inside the film. The resulting complex phasechange upon each 
single traversal of such reflected light wavesis now given by ©(5 ≡ Ã(5 2⁄ ≡ Re ©(5 − � Im ©(5 = �2π	5�5 λ⁄ � − � �2π�5�5 λ⁄ � = �v5 2⁄ � − � ��5�5 2⁄ �, where �5 ≡4π�5 λ⁄  is the absorption coefficient of the film’s material.  

In this case, the general matrix formula relating the electric-field amplitudesof the transmitted and 
specularly reflectedTE light plane waves to the electric-field amplitude of the normally-incidentTE light 
plane wave will be then modified as below 
 

����k���k� = �k¯5 N����0 P = N 1�̂k�̂5P N 1 l̂kl̂k 1 P � �£¦�R l̂5�£¦�R
l̂5��£¦�R ��£¦�R � N���~0 P 

 

           = N 1�̂k�̂5P Ä&�£¦�R + l̂kl̂5��£¦�R, &l̂k��£¦�R + l̂5�£¦�R,&l̂k�£¦�R + l̂5��£¦�R, &��£¦�R + l̂kl̂5�£¦�R,Å N���~0 P 

 

           = N 1�̂k�̂5P Ä&�£¦�R + l̂kl̂5��£¦�R,���~&l̂k�£¦�R + l̂5��£¦�R,���~Å                                                                                               �57� 
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Using the afore-adoptednotation forwriting the complex phase angle ©(5 and l̂k, l̂5, �̂k, and �̂5, the 
Fresnel’scomplex-amplitude reflection and transmission coefficients at the interfaces of the {semi-infinite 

dielectric layer 1/thin absorbinglayer 2/semi-infinite dielectric layer 3}-structure, one can acquirefrom 
Equation (57) a couple of neat complex expressions for itstotal normal-incidenceTE-wave specular 
reflection coefficient l̂k5~ and transmission coefficient �̂k5~ as described below in Equations (58) and (59) 
 

l̂k5~ ≡ ���k���k = l̂k5 + l̂5~��£Æ�R
1 + l̂k5l̂5~��£Æ�R                                                                                                                   �58� 

 

�̂k5~ ≡ ���~���k = �̂k5�̂5~��£�Æ�R/5�
1 + l̂k5l̂5~��£Æ�R                                                                                                                   �59� 

 
Equations (58) and (59) are exclusivelyidentical to thoseattained from a coherentsuperposition of the 
Fresnel’s complex amplitude reflection and transmission coefficients of the individual reflected and 
transmitted TE waves at the internal smooth surfaces of a thin plane-parallel conducting film sandwiched 
between two semi-infinite dielectric media [20-24, 26-33, 76] and to those that have been accomplishedby 
other different approaches [9-11, 51-53].  

It is worth noting here that Equations (58) and (59)equally describe the netspecular reflection l̂k5~and 
transmission �̂k5~coefficients ofan “ideal” three-layered structure having the{semi-infinite dielectric layer 
1/thin absorbing layer 2/semi-infinite dielectric layer 3}-pilingwhether the monochromatic lightplane 
waveis normally-incident( ḱ =  0o) or obliquely-incidentonto such an optical structure. In the oblique-
incidence case, the Fresnel’s reflection and transmission coefficients l̂k5, l̂5~, �̂k5, and �̂5~ at the respective 
interfaces of this structure should be evaluated from Equations (A3) and (A4) for the s-polarized (TE) light 
plane waves or from Equations (A9) and (A11) for the p-polarized (TM) light plane waves, with 	5 cos �́5being replaced by 5 − �®5in either polarization case[9]. 

However, the normal-incidence case is rather simpler as the Fresnel’s complex amplitude 
transmission and specular reflection coefficients l̂k5, l̂5~, �̂k5, �̂5~etc. for the above-described “ideal” {semi-

infinite dielectric layer/thin absorbingfilm/semi-infinite dielectric layer}-structureare identical for 
bothmonochromatic TE and TM light plane waves. The distinction between the two optical treatments is 
irrelevant, from both the physics and the mathematical viewpoints. To proceed further, let us assume that the 
TE or TM light plane wave that is incident normally onto the above-specified three-layered structure has a 
free-space spectral wavelength λ! and the thin optically-absorbing film (layer 2) of such a structure has a 
finite geometric thickness �5. Further, let us use the following 

notation:Ã(5 ≡ �4π	5�5 λ!⁄ � − � �4π�5�5 λ!⁄ � ≡ v5 − � Ç5, withÇ5 ≡ �5�5,l̂eg ≡ teg exp  ��veg� and �̂eg ≡ ueg exp  ��weg�in order to re-write Equations (58) and (59) in more manageable mathematical forms 
as described below 
 

l̂ ≡ l̂k5~ ≡ te£È¿ = tk5e£¶QR + t5~e�ÉRe£�¶RÊ� ¶R�
1 + tk5t5~e�ÉRe£�¶QR�¶RÊ� ¶R�                                                                            �60� 

 

�̂ ≡ �̂k5~ ≡ ue£ÈÀ = uk5u5~e� ËRR e£�ÌQR�ÌRÊ� ÍRR �
1 + tk5t5~e�ÉRe£�¶QR�¶RÊ� ¶R�                                                                              �61� 
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The required normal-incidence real scalar reflection and transmission coefficients tk5, tk5, uk5 and u5~ 
and the associated real phase changesvk5, v5~, wk5 and w5~ that take place upon the wave transmission and 
specular reflection at the respective layer interfaces(boundaries) of the above-specified{semi-infinite 

dielectric layer/thin absorbing film/semi-infinite dielectric layer}-structurecan be found, in terms of the 
optical constants of its layers, from the set of expressions given previously in Equations (21) - (26). 

It is not difficult to performa somewhat lengthy mathematical manipulation of the complex terms 
appearing in Equation (60) togetthe full expressions for thetotalnormal-incidencespecular reflectance �k5~ ≡ |l̂|5 ≡ l̂k5~l̂k5~∗ of the above-specified{thick dielectric layer/thinabsorbingfilm/thick dielectric 

layer}-structure, as well as the associated totalphase-change angle δ/ on reflection [9]. These expressions 
can be tidily given by the formulae below 
 

�k5~ = tk55 + t5~5 e�5ÉR + 2 tk5t5~e�ÉR cos�−vk5 + v5~ − ¼5�1 + tk55 t5~5 e�5ÉR + 2 tk5t5~e�ÉR cos �vk5 + v5~ − ¼5�                                                   �62� 

 

tan δ/ = t5~�1 − tk55 � sin�¼5 + v5~� + tk5�eÉR − t5~5 e�ÉR� sin vk5t5~�1 + tk55 � cos �¼5 + v5~� + tk5�eÉR + t5~5 e�ÉR� cos vk5                                            �63� 

 
By the same token, for the different semi-infinite dielectric layers 1 and 3 of the above-specified {semi-

infinitedielectric layer1/thinabsorbingfilm/thick dielectric layer3}-structure,onecan readily find 
fromEquation (61) the corresponding expressionsthat describe the totalnormal-incidencespectral 
transmittance �k5~ ≡ �	~ 	k⁄ �|�̂|5 ≡ �	~ 	k⁄ � ∗ ��̂k5~�̂k5~∗ � and the associatedtotalphase-change angle δnon 
transmission through itsthin filmas given below [9] 
 

�k5~ = 	~	k
uk55 u5~5 e�ÉR

1 + tk55 t5~5 e�5ÉR + 2 tk5t5~e�ÉR cos�vk5 + v5~ − ¼5�                                               �64� 

 

tan Ïδn − wk5 − w5~ + ¼52 Ð = eÉR sin ¼5 − tk5t5~ sin�vk5 + v5~�eÉR cos ¼5 + tk5t5~ cos�vk5 + v5~�                                               �65� 

 
It deserves noting here that Equations (62) – (65) are equally valid for the normally-incident TE- or 

TM- light plane wavebut with the substitution of the suitablevalues of thescalar transmission and specular 
reflection coefficientsuegand tegand the associated phase-angle changes vegand weg at the respective d-f 
interfacesforeither linearly-polarized plane wave [9]. 

It is also valuable to recall here that the overall phase-angle change δ/on reflection is referred to the first 
boundary of the thin film with the dielectric layer 1 (i.e., the 1-2 interface), while the totalphase-angle 
change δnon transmission through this film is referred to its second boundary with the thick weakly-
absorbing layer 3 (or the 2-3 interface). Further, these δ/- and δn- formulae are equally applicable whether 
the dielectric layer 3 is thick enough (semi-infinite) or when its back surface is utterly rough or blackened, 
so in both optical situations no light is being specularly reflected from or transmitted through this non-
smooth and inhomogeneous surface.     

For the purposes of future treatment of the optical behavior of simple four-layered structures, it is 
valuable to discuss in some detail the normal-incidence optical response of the three-layered structure 
having the {semi-infinite air layer/thin absorbingfilm/semi-infinite substrate}-piling. To distinguish between 
the optical responses of such a three-layered structure for opposite directionsof propagation of the light 
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plane wave incident onto it,I shall designate the air (vacuum), film, and substrate layers by the letters v, f, 
and s, respectively, instead of using the 123-sequence. 

Now, let a monochromatic TE(s-polarized) light plane waveof free-spectral wavelength λ!to be 
normally incident onto the above-specifiedthree-layered structure from the side of the semi-infiniteairlayer 1 
(	k = 1), and refer to this 123-direction along which the wave is propagating through the film as the vfs-
route. Further, assume the layer 3to be sufficiently thick weakly-absorbing substrate(�B ≠ 0) and having a 
real index of refraction 	B, while the film (layer 2) to be optically thin with a geometric thickness �5 and is 
made of a material having a complex index of refraction 	5 = 	5 − ��5, with its extinction coefficient �5being related to its optical absorption coefficient�5as �5 ≡ 4π�5 λ!⁄ .Temporarily, the number 2 is still, 
however, being used as a subscript for the various optical constants of the film (layer 2), but will be replaced 
by the letter f in all other symbolic designations.  

By making use of Equations (21) - (24),thenormal-incidencescalar specular reflection and transmission 
coefficients andthe associated phase changes on reflection and transmission at the respective interfaces of 
such {semi-infinite air layer/thin absorbingfilm/semi-infinite substrate}-structurecan now be re-written as 
follows 
 

tk55 = t��5 = �1 − 	5�5 + �55�1 + 	5�5 + �55 tan vk5 = tan v�� = − 2 �5	55 + �55 − 1                          �66� 

 

t5~5 = t�B5 = �	5 − 	B�5 + ��5 − �B�5
�	5 + 	B�5 + ��5 + �B�5 tan v5~ = tan v�B = − 2�	B�5 − 	5�B��	55 + �55� − �	B5 + �B5�      �67� 

 

uk55 = u��5 = 4�1 + 	5�5 + �55 tan wk5 = tan w�� = �51 + 	5                           �68� 

 

u5~5 = u�B5 = 4�	55 + �55��	5 + 	B�5 + ��5 + �B�5 tan w5~ = tan w�B = −  	B�5 − 	5�B	55 + �55 + 	5	B + �5�B      �69� 

 
Moreover, for future convenience and neatnessof the required final formulations ofthe specular reflectance �k5~ and transmittance �k5~ given in Equations (62)and (64),I shalladopt the following 
symbolicnotation:�5 ≡ exp  �− Ç5�, ∆k ≡ −vk5 + v5~ − v5 ≡ −v�� + v�B − v5 and ∆5 ≡ vk5 + v5~ −v5 ≡ v�� + v�B − v5, with the angles being expressed in radians.It is worth noting here that this tidy 
notation terminology has been also used, but in different symbolic forms, in the treatment of optical 
response of multi-layered structures [51-53].  

Let us first obtain, in view of this new symbolization,some well-ordered expressionsthat describeboth 
the spectral normal-incidence transmittance���B ≡ �k5~and specular reflectance ���B ≡ �k5~of this{air/thin 

absorbing film/thick weakly-absorbing substrate}-structure when the light plane wave is travelling through 

the film along the vfs-route. This can be achieved by replacing the coefficients tk55 , uk55 , t5~5  and u5~5 byt��5 , u��5 , t�B5  and u�B5 , respectively, which are already describedin Equations (66) – (69), and also by making use of 
the above-cited replacements of their associated phase angles on transmission and specular reflection at the 
respective interfaces of the film to its neighboring layers. 

Then, when the TE light plane wave is propagating through the film of such an “ideal” three-layered 
structure along the vfs-route, one can keenly re-write Equations (62) and (64) to obtain a couple of much 
more compact expressions to describe itstotalnormal-incidencespecular reflectance ���B and transmittance ���B, viz.  
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���B = t��5 + t�B5 �55 + 2�5t��t�B cos ∆k1 + t��5 t�B5 �55 + 2�5t��t�B cos ∆5                                                                                            �70� 

 

���B =  	Bu��5 u�B5 �51 + t��5 t�B5 �55 + 2�5t��t�B cos ∆5                                                                                            �71� 

 
Now, let the monochromatic TE light plane wave to be incident normally uponthe thin filmof 

this{air/thin absorbing film/thick weakly-absorbingsubstrate}-structure from the side of the thick substrate 
(layer 3) and travelling through the film (layer 1) towards the semi-infinite air medium (layer1). Designate 
this 321-direction of light wave propagation through the film (f)by the sfv-route, for which the normal-
incidence scalar specular reflection and transmission coefficients at the respective interfaces of such a three-

layered structuretk55 , uk55 , t5~5  and u5~5 have to be then replaced by tB�5  , uB�5  , t��5  and u��5 , respectively, with the 
correspondingly phase-angle changes vk5,v5~, wk5, and w5~being replaced by vB�,v��, wB�, and w��. For this 
sfv-route, Equations (21) – (24) become  
 

tk55 = tB�5 = �	B − 	5�5 + ��B − �5�5
�	B + 	5�5 + ��B + �5�5 tan vk5 = tan vB� = − 2 �	B�5 − 	5�B��	55 + �55� − �	B5 + �B5�      �72� 

 

t5~5 = t��5 = �	5 − 1�5 + �55�	5 + 1�5 + �55 tan v5~ = tan v�� = − 2�5	55 + �55 − 1                         �73� 

 

uk55 = uB�5 = 4�	B5 + �B5��	B + 	5�5 + ��B + �5�5 tan wk5 = tan wB� = 	B�5 − 	5�B	B5 + �B5 + 	5	B + �5�B �74� 

 

u5~5 = u��5 = 4�	55 + �55��	5 + 1�5 + �55 tan w5~ = tan w�� = −  �5	55 + �55 + 	5                        �75� 

 
Furthermore, for theplane wave propagation through the film along the sfv-route, Ishall nowuse the 

following notation:∆kÑ  ≡ −vk5 + v5~ − v5 ≡ −vB� + v�� − v5 and, since v�� ≡ v�� and vB� ≡ v�B 
(evenforan absorbingsubstrate), ∆5 ≡  vk5 + v5~ − v5 ≡ vB� + v�� − v5. For this case also, note that 
different notation has been used by other researchers [51-53]. Accordingly, the expressions that describe the 
total normal-incidence specular reflectance �B�� = �k5~ and transmittance �B�� = �k5~ of this{air/thin 

absorbing film/thick weakly-absorbingsubstrate}-pilingwhen the TE light plane wave is propagating along 
the sfv-routeshould now re-written as  
 

�B�� = tB�5 + t��5 �55 + 2�5tB�t�� cos ∆kÑ1 + tB�5 t��5 �55 + 2�5tB�t�� cos ∆5                                                                                               �76� 

 

�B�� = 1	B
uB�5 u��5 �51 + tB�5 t��5 �55 + 2�5tB�t�� cos ∆5                                                                                           �77� 

 
At this stage, it is worthwhile to point out a couple of features regarding the mathematical forms and 

applicability of the general well-ordered formulae given in Equations (70), (71), (76) and (77) that describe 
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the total transmittance and specular reflectance of the above-specified“ideal” {semi-infiniteair layer/thin 

absorbing film/thick weakly-absorbingsubstrate}-structure.  
Firstly, the respective expressions that were just cited, in different symbolic forms, by other workers 

[27, 28, 43, 51-53] can be shown to reconcile with these equations if one performs some mathematical 
manipulation and uses analogous definitions for the variousreflection and transmission coefficients and 
phase-angle parameters involved in their reported formulas. 

Secondly, in case of dissimilar dielectric layers 1 (air) and 3 (substrate), the ���B- and �B��- formulae are 
totally different, while the ���B- and �B��- formulae are identical under some practical conditions, as will be 
clear shortly and as weredeliberated by many researchers [27, 28, 43, 51-53], but in contrary with the 
findings reported in a more recent work [58]. This issue will now be discussed in detail.One can, using 
Equations (66) – (69) and (72) – (75), explicitly express Equations (70), (71), (76), and (77) that describe 
totalnormal-incidencespecular reflectance and transmittance of the {air/thin conducting film/thick 

dielectricsubstrate}-structure in terms of its layers optical constants 	5, �5, 	Band �Bas 

���B = Ï�k��R�R��RR�k��R�R��RRÐ + Ï��R��Ò�R���R��Ò�R
��R��Ò�R���R��Ò�RÐ �55 + 2�5 ÓÏ�k��R�R��RR�k��R�R��RRÐ Ï��R��Ò�R���R��Ò�R

��R��Ò�R���R��Ò�RÐÔQR cos ∆k
1 + Ï�k��R�R��RR�k��R�R��RRÐ Ï��R��Ò�R���R��Ò�R

��R��Ò�R���R��Ò�RÐ �55 + 2�5 ÓÏ�k��R�R��RR�k��R�R��RRÐ Ï��R��Ò�R���R��Ò�R
��R��Ò�R���R��Ò�RÐÔQR cos ∆5

 
          
= .�	5 + 	B�5 + ��5 + �B�50.�1 − 	5�5 + �550 + .�1 + 	5�5 + �550.�	5 − 	B�5 + ��5 − �B�50�55 + 2�5ÕHoÖ cos ∆k.�1 + 	5�5 + �550.�	5 + 	B�5 + ��5 + �B�50 + .�1 − 	5�5 + �550.�	5 − 	B�5 + ��5 − �B�50�55 + 2�5ÕHoÖ cos ∆5 
 
            (78) 
 

���B = Ï ¢�Ò�k��R�R��RRÐ Ï ¢^�RR��RR_��R��Ò�R���R��Ò�RÐ �5
1 + Ï�k��R�R��RR�k��R�R��RRÐ Ï��R��Ò�R���R��Ò�R

��R��Ò�R���R��Ò�RÐ �55 + 2�5 ÓÏ�k��R�R��RR�k��R�R��RRÐ Ï��R��Ò�R���R��Ò�R
��R��Ò�R���R��Ò�RÐÔQR cos ∆5

 
        
= 16	B�	55 + �55��5.�1 + 	5�5 + �550.�	5 + 	B�5 + ��5 + �B�50 + .�1 − 	5�5 + �550.�	5 − 	B�5 + ��5 − �B�50�55 + 2�5ÕHoÖ cos ∆5 
 
         (79) 
 

�B�� = Ï��Ò��R�R���Ò��R�R
��Ò��R�R���Ò��R�RÐ + Ï��R�k�R��RR��R�k�R��RRÐ �55 + 2�5 ÓÏ��Ò��R�R���Ò��R�R

��Ò��R�R���Ò��R�RÐ Ï��R�k�R��RR��R�k�R��RRÐÔQR cos ∆kÑ

1 + Ï��Ò��R�R���Ò��R�R
��Ò��R�R���Ò��R�RÐ + Ï��R�k�R��RR��R�k�R��RRÐ �55 + 2�5 ÓÏ��Ò��R�R���Ò��R�R

��Ò��R�R���Ò��R�RÐ Ï��R�k�R��RR��R�k�R��RRÐÔQR cos ∆5
 

          
= .�	5 + 1�5 + �550.�	B − 	5�5 + ��B − �5�50 + .�	B + 	5�5 + ��B + �5�50.�	5 − 1�5 + �550�55 + 2�5ÕHoÖ cos ∆kÑ.�	5 + 1�5 + �550.�	B + 	5�5 + ��B + �5�50 + .�	5 − 1�5 + �550.�	B − 	5�5 + ��B − �5�50�55 + 2�5ÕHoÖ cos ∆5 
 
(80)  
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�B�� =
k�Ò Ï ¢ ^�ÒR��ÒR_��Ò��R�R���Ò��R�RÐ Ï ¢ ^�RR��RR_��R�k�R��RRÐ �5

1 + Ï��Ò��R�R���Ò��R�R
��Ò��R�R���Ò��R�RÐ + Ï��R�k�R��RR��R�k�R��RRÐ �55 + 2�5 ÓÏ��Ò��R�R���Ò��R�R

��Ò��R�R���Ò��R�RÐ Ï��R�k�R��RR��R�k�R��RRÐÔQR cos ∆5
 

         
=

k×�Ò �	B5 + �B5��	55 + �55��5.�	5 + 1�5 + �550.�	B + 	5�5 + ��B + �5�50 + .�	5 − 1�5 + �550.�	B − 	5�5 + ��B − �5�50�55 + 2�5ÕHoÖ cos ∆5 
 
(81) 
 
The parameter ÕHoÖ is described by the expression given below  
 ÕHoÖ = Ø.�1 + 	5�5 + �550.�1 − 	5�5 + �550.�	5 + 	B�5 + ��5 + �B�50.�	5 − 	B�5

+ ��5 − �B�50ÙQR                                                                                                                 �82� 
 

Several conclusions of practical interest can be inferred from the set of Equations (78) – (81) as briefly 
discussed below. 

Consider an {air/film/substrate}-structure composed of a semi-infinite dielectric substrate onto which a 
thick metallic filmsothat �5�5 ≽ 0.37λ!, these equations reduce, using �B = 0and setting the terms 

containing�5 and �55to zero,tothe following simple forms [9] 
 

���B ≅ �1 − 	5�5 + �55�1 + 	5�5 + �55 �B�� = �	B − 	5�5 + �55�	B + 	5�5 + �55 �83� 

 

���B = �B�� = 16	B�	55 + �55�.�	5 + 1�5 + �550.�	5 + 	B�5 + �550 �5~ exp N− 4π�5�5λ! P ≅ 0                          �84� 

 
Equations (83) and (84) tell us that the normal-incidenceoptical response of a “thick”metallicfilmlaid on 

an infinite transparent substrate placed in air is dominated by reflection at the air-film(or substrate-
film)interface when light is incident from the air (or substrate) side on the film. For both directions of light 
wave propagation, little light is transmitted to the substrate (or air), implying that in a “thick” metallic film 
the effect of interference of the multiple light beam reflections inside the metallic film is of little importance. 

Further, one can inspect from Equations (79) and (81) that the normal-incidence transmittances ���Band �B�� of an “ideal”{air layer/thinabsorbing film/semi-infinite dielectricsubstrate}-structure are indeed equal 
to each other provided that the dielectric substrate is transparent (�B = 0) or weakly-absorbing with �B <�5and �B5 ≪ 	B5. This is true whether the thin film bounded by air and substrate is made from a non-
absorbing (transparent) dielectric material or optically-absorbingsubstance with �5 ≠ 0and �5 < 1. This fact 
has a special significance in the derivation of the full formulae describing the total specular reflectance and 
transmittance of four-layered optical systems having the {air/thin film/dielectric substrate/air}-stacking.  

Moreover, ���B given in Equation (78) does not equal to�B��given in Equation (80) unless �B = 0and �5 = 0,so�5 ≡ 1 and ∆k= ∆kÑ = −¼5 as vk5 = v5~ = 0;a situation that is justified only for a perfectly 
dielectric thin film bounded by two semi-infinite transparent media. This “strict” condition may be fulfilled 
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for a thin semi-conducting layerover a limited portion of its transmission spectrum for wavelengths aboveits 
fundamental absorptionedge (that is, in its fully transparent region).Just for an {air/thin dielectric film/thick 

dielectric substrate}-structureone can only allege that thetotal normal-incidence reflectance ���B = �B�� =1 − ���B = 1 − �B��[58], but notfor an absorbing thin film (�5 ≠ 0). Consequently,if one put �5 = 0and �B = 0,�5 ≡ 1, vk5 = v5~ = 0 and ∆k= ∆5= ∆kÑ = −v5 intoEquation (78) – (82), the formulae of the 
spectral normal-incidence specular reflectance ���B = �B�� and transmittance ���B = �B��of this later three-
layered structure are, for 	5 > 	B, given by the following expressions 
 

���B = �	5 − 1�5�	5 + 	B�5 + �	5 + 1�5�	5 − 	B�5 −  2 �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ �
�	5 + 1�5�	5 + 	B�5 + �	5 − 1�5�	5 − 	B�5 −  2 �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ � 

 

         = �	55 − 	B�5 + 	55�	B − 1�5 −  �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ �
�	55 + 	B�5 + 	55�	B + 1�5 −  �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ �                                                      �85� 

 

���B = 16 	B	55�	5 + 1�5�	5 + 	B�5 + �	5 − 1�5�	5 − 	B�5 −  2 �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ � 

 

         = 8 	55	B�	55 + 	B�5 + 	55�	B + 1�5 −  �	55 − 1��	55 − 	B5� cos �¢Ü�R�RÝÞ �                                                      �86� 

 
4. Optical response of four-layered structures 
 

Consider asolid thin film with a geometric thickness �5 and a complex index of refraction 	5 ≡ 	5 −��5that is deposited onto an optically-thick non-magneticand homogeneous substrate with a finite geometric 
thickness �B (≫ �5) and a complex index of refraction 	B ≡ 	B − ��B.Let thisfilm-substrate unitto be 
bounded by two semi-infinite transparentmedia of constant indices of refraction 	k and 	¢ (≠ 	k); thus,in 
the terminology of the present article, one has in hand a four-layered optical structure. Most 
literaturetreatments of the optical response of four-layered structuresoften presuppose isotropic, non-
magnetic and homogenous (in thickness and composition) film and presume that the interfaces of layers in 
contact with each other are smooth and plane-parallel, that is- an“ideal” four-layered system.  

Further, depending on the spectral region of interest, �B = 0 (transparent substrate), or �B ≪ �5 and �B5 ≪ 	B5(weakly-absorbing substrate), or the substrate may be optically absorbing over a wide range of 
spectral wavelengths below and/or above the optical absorption edge of the film. Accordingly, the influence 
of the optical absorption inthe substrate ought to be taken into account in any rigorous mathematical 
treatment or experimental analysis of the optical response of an “ideal” four-layered structure containing 
such a partially- or strongly- absorbing substrate. 

The formulae of the totaltransmittance ����and specular reflectance ����, at a certain light wavelength �, of “ideal” four-layered structures might not be suitable when one deals with optical four-layered 
structures includingrealsolid films [59-73]. This is because such films may wellsuffer from inhomogeneities 
of different types (thickness variation, and/or surface roughnessand/or refractive- index fluctuations due to 
variations in the film composition orclustering), depending on the film material andon the technique 
employed for its deposition. Thedeparture from “ideal”multi-layered structureshas the effect of altering 
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markedly theirmeasured spectra and optical parameters when are computed from the ����- and ����-
formulae developed for their counterpart “ideal” systems [35, 59]. Though, the as-measured transmission or 
specular reflection spectra of “non-ideal” filmscan be analyzed using modified����- and ����- formulae 
that take into account thesenuisancesto get reliable values for theiroptical parameters. This issue will not be 
discussed here furtherand intent readers are advised to consult the pertinent literature articles[35, 59-73]. 

Further, material films of technological importance are usuallydeposited onto thick transparent glass 
slides or on top of the much more exorbitant quartz or sapphire wafers. Also, among other crystalline 
substrates, crystalline silicon (Si) wafers are occasionally used as substrates for some films of interest. 
However, athininterfacial layer of native silicon dioxide (SiO2) is consistentlydeveloped on the surface of 
the Si-wafer in contact with the deposited film (also on the Si-wafer outer surface), unless extremely 
precautionary practical measures are taken prior to film deposition. Accordingly, one has to deal with a five- 
or six-layered structure, for which the mathematical formulations and analysis of their total transmittance 
and specular reflectance are much more involved and complicated [26, 28, 81] and the optical response of 
such multi-layered structures will not be discussed further in the present article. 

Additional complication arises when one employs the ����- and ����- formulae of an “ideal” four-
layered structure to analyze its optical spectra obtained by the use of a large non-

zerospectrophotometer’sspectral bandwidth(SBW), yet the effect of this could be eliminated in practiceby 
choosingreasonably small SBWs and/or by correcting its weight in the analysis of the as-measured optical 
transmission/reflection spectra of the structure under investigation [35].  

To proceed further, let us enlighten some other aspects of practically encountered “ideal” optical {layer 
1/film/substrate/layer 4}-structures. From a geometrical point of view, the substrate (layer 3) of this four-
layered structure now introducesa front interface(boundary) tolayer 4(usually a semi-infinite air 
medium)besides its back boundarywithone of the surfaces of the film (layer 2), the other (front) surface of 
which possesses another interface to layer 1, which is typicallya semi-infinite layer of air. In this 
air/film/thick substrate/air structure, the film and substrate will be assumed to be made of linear, isotropic, 
homogeneous, non-magnetic and optically transparent and/or partially-absorbing materials.  

If all surfaces of the film and substrate of the above-specified four-layered structure are plane-parallel, 
smooth, homogeneous, and of high optical quality,the light plane waves propagating through each of them 
will execute multiple back and forth reflections at their respective internal surfaces. Therefore, one hasto 
include the effect of multiple internal reflections occurring insideboth the film and the substrate in a 
complete derivation of the spectral ����- and ����- formulaedescribing the optical response of such an 
“ideal” four-layered structure. 

For an optically thinfilm deposited on top of a sufficiently thick substrate, both having smooth and 
plane-parallel surfaces, the interference between the internal specularly reflected plane waves travelling 
inside the thin film cannot be tolerated and its optical behavior must be treated in the framework of the 
coherent formulations already discussed in preceding sections. However, the internal light wave specular 
reflections taking place inside the thick substrate had tobe treated incoherently, as the interference between 
these reflected waves is normal considered to be of little importance (see details in previous sections). On 
the other hand, when the film and substrate are boththickand have smooth, homogenous and plane-parallel 
surfaces, the internal light plane wave specular reflections taking place inside each of them willbe treated 
incoherently.  

In contrast, if the backside of the substrate in contact with the layer 4 of a four-layered optical structure 
is rough and unpolished or blackened, the light wave reflections at this back surface will be random; thus, 
specular reflections from this surface can be neglected and the light beam transmitted from the film into the 
thick optically absorbing substrate will only suffer from optical absorption during its passage inthe substrate 
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before it emerges to layer 4. So, the formulations of the optical responseof a structure containing such kind 
of substrate turn out to be relatively less involved than the case when the substrate’s backside is of high 
optical quality.  

The complete mathematical formulations of the total normal-incidencespectral transmittance and 
specular reflectance of only two particular types of “ideal” four-layered structures will shortly be derived in 
detail. The first is that consists of an optically thin film deposited onto a thick dielectric substrate, with their 
free outer surfaces being surrounded by semi-infinite air media, that is- an “ideal”{air/thin film/thick 

dielectric substrate/air}-structure, while the second is that comprising ofa film and a dielectric substrate 
which are bothoptically thick, that is- having the {air/thick film/thick dielectric substrate/air}-piling. In the 
present article, the former structure will be referred to as type-A optical system, while the latter will be 
termed as type-B optical system. 
 
4.1 Spectral transmittance and specular reflectance of {air/film/thick substrate/air}-structures  
 

A simple model of the four-layered optical structures is that entails a partially-absorbing or non-
absorbing film deposited ontoan opticallythick transparent or weakly-absorbingsubstrate, with the film-
substrate unit being immersed in normal air, that is-an {air/film/thick substrate/air}-structure. Of course, the 
materials of both the solid film and the substrate will be presumed to be linear, isotropic, homogeneous (in 
thickness and composition) and nonmagnetic (J = J!) and their surfaces in contact with each other to be 
smooth, homogeneousand plane-parallel. Now, let us derive in detail the full analytical expressions that 
describe the spectral transmittance and specular reflectance for such an “ideal” {air/film/thick 

substrate/air}-structure. 
Before proceeding further, it is important to point out here that as multiple internal specular reflections 

occur in both of the film and thick substrate of this particular four-layered structure, there are in practice two 
directions of light propagation and transmission through the film, and this should therefore be equally 
considered in a complete and rigorous analysis of its optical response.To be more specific, when a light 
beam is incident on the smooth air-film interface from the side of the semi-infinite air medium (layer 1), it 
will be partially reflected back intothis air layer and the other part will be refractedinto the film (layer 2) 
toward the opposite internal film-substrate interface. This refracted (transmitted) light beam in turn will be 
partly reflected back inside the film and partly transmitted into the substrate (layer 3). The light beam 
transmitted inside the substrate will continue propagating towards its internal backside surface that is in 
contact with the other semi-infinite air medium (layer 4), through which a part of this light plane wave will 
be transmitted (without backward reflections), while the other part will be reflected back into the substrate, 
propagating through it in the opposite direction and heading towards its internal boundary with the film. 
This back reflected light beam will in turn be partly transmitted inside the film and partly reflected back 
again into the substrate, and so on.  

In effect, a monochromatic light plane wave hitting an “ideal” {air/film/thick substrate/air}-structure 
will be repeatedly reflected back and forth at the inner smooth andplane-parallel surfaces of both the film 
and the substrate. The result is that a fraction of thesespecularly reflected light plane waves will 
progressively propagate in the forward spatial direction along the path sequence: vacuum (layer 1) → film 
(layer 2) → substrate (layer 3), called the 123- (vfs-) route, and will eventually transmitted into the last air 
medium (layer 4) without being reflected backward, giving rise to the total spectral transmission �k5~¢for 
this four-layered structure. The other fraction of all multiply reflected light beams will return back to the 
incident air medium (layer 1), also without being reflected backward, via the opposite direction of 
propagation alongside the path sequence: substrate (layer 3) → film (layer 2) → vacuum (layer 1), labeled by 
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the 321- (sfv-) route, with asystem’s total specular reflectance �k5~¢. The geometrical and symbolical details 
of the overall optical response of an{air/film/thick substrate/air}-structure is clarified in Figure 
2shownbelow.  

As already discussed the forward and backward specular reflections and transmissions at the interfaces 
of the film to airand substratealong the opposite vfs- and sfv- routesof lightpropagation give identical values 
for the transmittances���B and �B��. In contrast, the specular reflectances���B and �B��werepreviously shown 
to be described by entirelydifferent expressions and only have the same values if both the film and substrate 
are transparent in the sense that �5 = 0and �B = 0. When a TE light plane wave of wavelength �! is 
incident onan {air/film/thick substrate/air}-structure from left (see Figure 2), the total transmittance �non��!� 
or �k5~¢ and specular reflectance �non��!�or �k5~¢are determined by a couple of general expressions, which 
are equally valid whether the TE light plane wave is normally or obliquely incident onto the air-film 
interface, viz.  
 �k5~¢ ≡ �k5~ + �~¢�k5~�~5k�~5 + �~¢5 �~5k�k5~�~5k�~¢ + �~¢~ �~5k5 �k5~�~5k�~×                          + �~¢¢ �~5k~ �k5~�~5k�~à +  ….        
 = �k5~ + �~¢�k5~�~5k�~5.1 + �~¢�~5k�~5 +  �~¢5 �~5k5 �~¢ +  �~¢~ �~5k~ �~× +  ….   0 
 

             = �k5~ +  �~¢�k5~�~5k�~51 − �~¢�~5k�~5 = �k5~ +  �~¢�k5~�~5k exp�−2�B�B�1 − �~¢�~5k exp�−2�B�B�                                     �87� 

 �k5~¢ ≡ �~¢�k5~�~ + �~¢�k5~��~¢�~5k��~~ + �~¢�k5~��~¢�~5k�5�~á +  �~¢�k5~��~¢�~5k�~�~â                                     +�~¢�k5~��~¢�~5k�¢�~ã + ⋯ 
              =  �~¢�k5~�~.1 + ��~¢�~5k��~5 + ��~¢�~5k�5�~¢ +  ��~¢�~5k�~�~× +  ….  0 
 

             =  �~¢�k5~�~1 − �~¢�~5k�~5 =  �k5~�~¢ exp�− �B�B�1 − �~¢�~5k exp�−2�B�B�                                                                 �88� 
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Figure 2:A sketch showing the optical response of an “ideal” {air/film/thick substrate/air}-structure. 
Coherent interference between the multiple specular reflections occurring inside the film will be only 
important if the film is optically thin; otherwise the multiple internal reflections inside both of the film and 
substrate had to be treated incoherently. Here, the absorption parameter�~ ≡ exp  �−�B�B�and �B ≡4π�B λ!⁄ , which is the substrate’s optical absorption coefficient. The corresponding parameters for the film 
will appear explicitly in the derivation details (see text).  
 

The general expressions described by Equations (87) and (88) are identical to the respective 
mathematical formulationsreferred to in a number of literature articles and advanced books of optics [10, 11, 
26-28, 42-44, 51-53] for the total specular reflectance and transmittance of“ideal” four-layered structures 
similar to that described in Figure 2.Nevertheless, one may notice that there are some differences in writing 
the final forms of the �k5~¢- and �k5~¢- expressions quoted in such references, and most of these marginally 
diverse results originate from the different definitions and analytical approaches being adopted to 
accomplish them. But, it is worth noting here that the numerator of the �k5~¢-expression quoted by Minkov 
in two of his published papers [51, 52] contains the symbol t~¢ to represent the reflectance of the back 

substrate-air interface. Further, the �k5~¢-expressions appear in his papers [51, 52] do not match with each 

other in the sense that the symbol u~¢5  is quoted in one of them [51] and u~¢¢  is written in the other [52]. 
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These discrepancy seems to originate from mistyping and the symbol t~¢ in the numerator of Minkov’s �k5~¢- expressions should be replaced by t~¢5  (≡ �~¢). In the same Minkov publications [51-53], however, 
these supposed misprints do not appear neither in Minkov’s �k5~¢-expressions nor in the denominator of the 
corresponding �k5~¢-expressions.  
 
4.1.1Normal-incidence transmittance and specular reflectance of type-A optical structures 
 

Now, let us specialize the general�k5~¢- and �k5~¢- formulasgiven in Equations (87) and (88) to get the 
full formulae that describe the total reflectance �k5~¢ = ���B� and transmittance �k5~¢ = ���B� of an 
“ideal”{air/thin conductingfilm/thick dielectricsubstrate/air}-structure (or the so-called type-A four-layered 
optical system) when a monochromatic TE light plane wave is incident normally at itsair-film interface. To 
realize this, onefirst needsto find the explicit expressions that describe the intensity reflection and 
transmission coefficients �~¢ = �B� and �~¢ = �B� at the back substrate-air interface. By making using of 
Equations (16) - (18) and inserting �B = �� = 0 and 	� = 1 into these equations, onecan readily get the 
following expressions 
 

�B� = �	B − 1�5
�	B + 1�5                                    �89� 

 

�B� = 1 − �B� = 4	B�	B + 1�5 �90� 

 
Further, let us put�B = �B = 0 and �k5~ = ���B, �~5k = �B��, �k5~ = ���B = �~5k = �B��, which are 

already derived in Equations (78) – (82) for the “ideal” {air/film/thicksubstrate}-structureonto which 
monochromatic TE light plane waves are incidentnormally, and insertthe values of �B� and �B�described by 
the above-obtained Equations (89)and (90)into Equations (87) and (88). The resulting formulations will be a 
couple of comprehensiveexpressions that describe the overallnormal-incidencespecular reflectance���B� and 
transmittance ���B�of an “ideal”{air/thinconductingfilm/thickdielectricsubstrate/air}-structure and which 
can be written in a simple symbolic form as shown below  
 

���B� = ���B +  �B����B5
1 − �B��B�� = ���B +  �	B − 1�5���B5

�	B + 1�5 − �	B − 1�5�B��                                                 �91� 

 

���B� = �B����B1 − �B��B�� =  4 	B���B�	B + 1�5 − �	B − 1�5�B��                                                                            �92� 

 
Next, let us evaluate the formulae for the total normal-incidence specular reflectance ���B� and 

transmittance ���B� of the type-A four-layered structure in terms of the optical parameters 	5, �5, and�5 or �5 ≡ exp �−�5�5�of its film and 	B of its substrate (�B = 0). To accomplish this goal, I have to revert to the 
original ���B-, �B��-and ���B- expressions given in Equations (78) – (82). 

Careful inspection of these expressions ensures that their denominators are all identical and both of their 
numerators and denominators can be enthusiasticallyhandledtocontain thefactor Ø.�1 + 	5�5 + �550 ∗.�	5 + 	B�5 + �550Ù, which can then be dropped out from theirfinal forms. The squareroot isalso the same in 
their numerators and denominators and its argument can be written in a neaterform. Then, Equations (78) – 
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(81) can be, by making use of somewhat dull mathematical manipulations,shown to reduce to the compact 
forms as given below  
 

���B = äk + ä5�55  + äHoÖ�2�5 cos ∆k�ä~ + ä¢�55  + äHoÖ�2�5 cos ∆5�                                                                                              �93� 

 

�B�� = ä5 + äk�55  + äHoÖ�2�5 cos ∆kÑ �ä~ + ä¢�55  + äHoÖ�2�5 cos ∆5�                                                                                              �94� 

 

���B = .16 	B�	55 + �55�0�5ä~ + ä¢�55  + äHoÖ�2�5 cos ∆5�                                                                                                �95� 

 äk = .�	5 − 1�5 + �550 ∗ .�	5 + 	B�5 + �550                                                                                          �96� 
 ä5 = .�	5 + 1�5 + �550 ∗ .�	5 − 	B�5 + �550                                                                                          �97� 
 ä~ = .�	5 + 1�5 + �550 ∗ .�	5 + 	B�5 + �550                                                                                          �98� 
 ä¢ = .�	5 − 1�5 + �550 ∗ .�	5 − 	B�5 + �550                                                                                          �99� 
 

äHoÖ = M.�	55 + �55 − 1�5 + 4�550 ∗ .�	55 + �55 − 	B5�5 + 4 	B5�550                                                  �100� 

 
Equations (93) – (95) can readily be simplified further by expressing theircosine termscos ∆k, cos ∆kÑ , 

and cos ∆5, which are effusivelydescribed in Equations (C1) – (C6) of AppendixC, in terms of the above-
mentioned optical parameters of the Type-A four-layered structure. The obtained results can then be re-
written in the following forms 
 

cos ∆k= åäkÑ + 4 	B�55äHoÖ æ cos ¼5 + 2�5 å�	55 + �55 − 	B5� − 	B�	55 + �55 − 1�äHoÖ æ sin ¼5                 �101� 

 

cos ∆kÑ = åäkÑ + 4 	B�55äHoÖ æ cos ¼5  + 2�5 å	B�	55 + �55 − 1� − �	55 + �55 − 	B5�äHoÖ æ sin ¼5              �102� 

 

cos ∆5 = åäkÑ − 4 	B�55äHoÖ æ cos ¼5   − 2�5 å	B�	55 + �55 − 1� + �	55 + �55 − 	B5�äHoÖ æ sin ¼5              �103� 

 
It is not difficult to show that the parameter äkÑthat appears in the above Equations (101) – (103) can be 
written in the following expression  
 äkÑ = �	55 + �55 − 1� ∗ �	55 + �55 − 	B5�                                                                                                 �104� 
 

Armed with the set of Equations (93) – (104), I amnow in a position to re-manipulate Equations (91) 
and (92) to acquire the formulae that fully describe the total normal-incidence specular reflectance ���B� and 
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transmittance ���B� of the type-A four-layered structure having the {air/thin conductingfilm/thick 

dielectricsubstrate/air}-piling. Let us first start with the relatively simple ���B�-expression, which can now 
be re-written in the form  
 

���B� =
¢ �Ò&k× �Ò^�RR��RR_,çRèÊ�èéçRR �èêëì�5çR HoB ∆R�

�	B + 1�5 − �	B − 1�5 ÓèR�èQçRR �èêëì^5çR HoB ∆Qí _èÊ�èéçRR �èêëì�5çR HoB ∆R�Ô  

 

= 4 	B.16 	B�	55 + �55�0�5.ä~�	B + 1�5 − ä5�	B − 1�50 + �55.ä¢�	B + 1�5 − äk�	B − 1�50 − 2�5äHoÖ.�	B − 1�5 cos ∆kÑ −�	B + 1�5cos ∆50
 �105� 
 
To avoid redundancy in writing the expressions describing the various terms appearing in the final forms of 
the ���B�- and ���B�- formulae of such an “ideal” four-layered structure, the expression given in Equation 
(105) will now be re-written in a neater form to get the final formula that determinesits totalTEnormal-

incidence transmittance ���B�[35], viz.  
 

���B�  =   Õk�Õ5 − Õ~� + Õ¢�5                                                                                                                  �106� 

 
For organized handling of the problem, the absorption parameter �5 ≡ exp�− �5�5� ≡ exp�− 4π�5�5 λ!⁄ �appears in Equation (105) is now inserted in the above-cited 

Equation (106) as � ≡ exp�− ���. In addition, it will be also more convenient for later tidy writing of the 
transmittance and reflectance formulations to replace the previous symbols designating the film’s 
geometrical thickness �5, its index of refraction 	5, extinction coefficient �5 and absorption coefficient �5 
by the following new symbols �, 	, �, and ��≡ 4π� λ!⁄ �, respectively. The phase change ¼5 ≡ 4π	5�5 λ!⁄  
due to the optical path difference arising from a double traversal of the light wave inside the film is thus re-
written as¼ ≡ 4π	 � λ!⁄ . In this new symbol notation, the parameterÕkis nowgiven by the following 
expression  
 Õk = 16 	B�	5 + �5�                                                                                                                              �107� 
 

The final forms of the other parameters Õ5, Õ~, and Õ¢cited in Equation (106), however,can be only 
found by a bit tedious mathematical manipulation of the first, second, and third terms of the denominator of 
Equation (105).The first termcan be simplified, using the expressions of ä5 and ä~ given in Equations (97) 
and (98), to get the requiredÕ5-formula  
 Õ5 = .�	 + 1�5 + �50 ∗ .�	 + 1� ∗ �	 + 	B5� + �50                                                                         �108� 
 

Similarly, though the third term in the denominator of Equation (105) is more involved, careful 
mathematical handling, by making use of Equations (100), (102), and (103)that describe, respectively, the 
parameters äHoÖ, cos ∆kÑ , and cos ∆5, enables one to arrive at a well-ordered expression for the termÕ~of the 
form  
 



European International Journal of Science and Technology                       Vol. 2 No. 5                    June 2013 

 

 

251 

Õ~ = Ø�	5 + �5 − 1� ∗ �	5 + �5 − 	B5� − 2�5�	B5 + 1�Ù ∗ �2 cos ¼�                                −�Ø2 �	5 + �5 − 	B5� + �	B5 + 1� ∗ �	5 + �5 − 1�Ù�2 sin ¼�                       �109� 
 

Lastly, the second term in the denominator of Equation (105) can be worked out, using Equations (96) 
and (99), to get a simple expression for the parameter Õ¢of Equation (106) as  
 Õ¢ = .�	 − 1�5 + �50 ∗ .�	 − 1� ∗ �	 − 	B5� + �50                                                                           �110� 
 

For purposes to be discussed later, let us at this stage to presume that the film is made from an optically 
non-absorbing (transparent) dielectricsubstance (at least over the wavelength portion of the electromagnetic 
spectrum that lies above its optical absorption edge). The resulting meek four-layered optical system has 
the{air/thin dielectricfilm/thick dielectricsubstrate/air}-stacking. Then,by putting� ≅ 0in the whole set of 
Equations (107) – (110) cited above, one will develop a somewhat simple form for the total spectral normal-

incidence transmittance �produced bythe “ideal” {air/thin dielectricfilm/thick dielectricsubstrate/air}-
structure as described below 
 

� =   16 	B	5�Ø�	 + 1�~ ∗ �	 + 	B5�Ù − 2� cos ¼ Ø�	5 − 1� ∗ �	5 − 	B5�Ù + �5Ø�	 − 1�~�	 − 	B5�Ù              �111� 

 
Next, let us derive the complete expression for the specular normal-incidence reflectance ���B� of the 

“ideal” optical system having the above-specified type-A four-layered structure- that is, the {air/thin 

conductingfilm/thick dielectricsubstrate/air}-structure. To attain this aim,one had to substitute the 
mathematical expressions of ���B, �B��and ���Bgiven above by Equations (93) – (95) into the general 
Equation (91) and adopt the new designation scheme of the film’s parameters described above. After some 
dreary mathematical handling, it is not difficult to show that the required general ���B�-formula can be 
written in the following form  
 
 

���B� = äk + ä5�5  + äHoÖ�2� cos ∆k�ä~ + ä¢�5  + äHoÖ�2� cos ∆5� +  �	B − 1�5 Ó &k× �Ò^�R��R_,çRèÊ�èéçR �èêëì�5ç HoB ∆R�Ô5

�	B + 1�5 − �	B − 1�5 ÓèR�èQçRR �èêëì^5çR HoB ∆Qí _èÊ�èéçRR �èêëì�5çR HoB ∆R�Ô 

 
 

          =   äk + ä5�5  + äHoÖ�2� cos ∆k�ä~ + ä¢�5  + äHoÖ�2� cos ∆5�"  + � 1ä~ + ä¢�5  + äHoÖ�2� cos ∆5�� 

 

                  ∗  �	B − 1�5.256 nB5�	5 + �5�5�50�	B + 1�5.ä~ + ä¢�55  + äHoÖ�2�5 cos ∆5�0 − �	B − 1�5.ä5 + äk�55  + äHoÖ�2�5 cos ∆kÑ �0" 

 

      =  îk +  äá�5
î5 " ∗ � 1î~�                                                                                                                            �112� 

 
The new parameter äáappearing in Equation (112) has been chosen to have the form given below  
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äá = 64 	B�	B − 1�5�	5 + �5�5                                                                                                        �113� 
 
To find the term îk of Equation (112), a simple manipulation of the terms{äHoÖ cos ∆k} and {äHoÖ cos ∆5} 
ought to be made, by making use of Equations (100) - (103). The obtained results of these last terms can be 
represented bythe following relationships 
 äHoÖ cos ∆k = ØäkÑ + 4	B�5Ù cos ¼ − 2�Ø− �	5 + �5 − 	B5� + 	B�	5 + �5 − 1�Ù sin ¼         �114� 
 äHoÖ cos ∆5 = ØäkÑ − 4	B�5Ù cos ¼ − 2�Ø�	5 + �5 − 	B5� + 	B�	5 + �5 − 1�Ù sin ¼             �115� 
 
Thus, the îk-term can be re-written in a neat form as below 
 

îk =   Õá + ØÕ× cos ¼ − Õâ sin ¼Ù� + Õà�5
Õã + ØÕk! cos ¼ − Õkk sin ¼Ù� + Õk5�5                                                                                   �116� 

 
The set of the new parameters Õá, Õ×, Õâ, Õà, Õã, Õk!, Õkk, and Õk5that appear in the previous Equation 

(116) are reasonably chosen to be typified by the following compact expressions  
 Õá = .�	 − 1�5 + �50 ∗ .�	 + 	B�5 + �50                                                                                             �117� 
 Õ× = 2Ø�	5 + �5 − 1� ∗ �	5 + �5 − 	B5� + 4	B�5Ù                                                                           �118� 
 Õâ = 4�Ø− �	5 + �5 − 	B5� + 	B�	5 + �5 − 1�Ù                                                                               �119� 
 Õà = .�	 + 1�5 + �50 ∗ .�	 − 	B�5 + �50                                                                                             �120� 
 Õã = .�	 + 1�5 + �50 ∗ .�	 + 	B�5 + �50                                                                                             �121� 
 Õk! = 2Ø�	5 + �5 − 1� ∗ �	5 + �5 − 	B5� − 4	B�5Ù                                                                         �122� 
 Õkk = 4�Ø�	5 + �5 − 	B5� + 	B�	5 + �5 − 1�Ù                                                                                  �123� 
 Õk5 = .�	 − 1�5 + �50 ∗ .�	 − 	B�5 + �50                                                                                           �124� 
 

The term î5 in the denominator of Equation (112) is already evaluated throughout the discussion of the 
corresponding normal-incidence spectral transmittance formula of the same structure and it is given by the 
value of the denominator of Equation (106), viz.  
 î5 = Õ5 − �Õ~ + �5Õ¢                                                                                                                             �125� 
 
Finally, the term î~ of Equation (112) is simply the denominator of the îk-expression already described in 
Equation (116) and is expressed by the following formula  
 î~ = Õã + ØÕk! cos ¼ − Õkk sin ¼Ù� + Õk5�5                                                                                   �126� 
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It deserves noting here that the expression for the total normal-incidencespectral reflectance ���B� of the 
above-specified{air/thin conducting film/thick dielectric substrate/air}-structure,and which is detailed 
inEquation (112),together with all of its parameters being expressed in Equation (113) – (126),is that just 
cited, in different style of writing the general formulations using diverseset of symbols and defined terms, in 
addition to some specific model approximations, in a number of literature articles [41, 51, 52, 54, 60, 61].  
 
4.1.2Normal-incidence interference-free transmittance and specular reflectance ofthe type-B four-

layered structure with multiple internal reflections insideboth the film and the substrate  

 
Consider a type-B four-layered structure with the {air/thick film/thick dielectric substrate/air}-

assembling,in which the dielectric (transparent) substrate(s) has an index of refraction 	B and an 
insignificant extinction coefficient (�B ≅ 0), while the optically-absorbing film (f) has a complex index of 
refraction 	 ≡ 	 − ��and an absorption coefficient � (≡ 4π� λ⁄ ), where λ is the wavelength of the 
monochromatic incident TE light plane wave.Further, assume that both of the substrate and the film are 
optically thickenough and possess smooth and plane-parallel surfaces. In this case, incoherentmultiple 
internal back and forth specular reflections will take place inside the film as well as the substrate since no 
interference between these reflections is significant. Take into account the optical absorption that may occur 
within the film, of a geometrical thickness �, and then employthe incoherentformalism to derive the total 
normal-incidenceinterference-free transmittance and specular reflectance of such atype-B four-layered 
structure [28, 83]. 

Let us now denote,for a monochromaticTE light plane wave propagatingthrough such a structure along 
the vfsv-route, the intensity reflection coefficients at the air-film, film-substrate, and substrate-airinterfaces 
by, in that order,���, ��B and �B�, respectively.With the aid of Equation (16), one can write the formulae of 
these intensity reflection coefficients (for the case	 > 	B) as  
 

��� ≡ ��� = �	 − 1�5 + �5
�	 + 1�5 + �5                                                                                                                    �127� 

 

��B ≡ �B� = �	 − 	B�5 + �5
�	 + 	B�5 + �5                                                                                                                   �128� 

 

�B� ≡ ��B = �	B − 1�5
�	B + 1�5                                                                                                                            �129� 

 
Note here that ���, �B� and ��B are the intensity reflection coefficients at the air-film, film-substrate, and 

substrate-air interfaces,but forthe light plane wave that is propagating along the opposite vsfv-route. The 
expressions that describe the respectiveintensity transmission coefficients ���, ��B, �B�, ���, �B� and ��Bat the 
above-specified three interfaces of the type-B four-layered structure for thetwo opposite vfsv-and vsfv-
routesof the light-wave propagation through the film can readily be shown, by making use of Equations (17) 
and (18), to have the following forms  
 

��� ≡ 1 − ��� = 4 	�	 + 1�5 + �5                                                                                                              �130� 
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��� = N1	P 4 �	5 + �5��	 + 1�5 + �5                                                                                                                          �131� 

 

��B = �	B	 � 4 �	5 + �5��	 + 	B�5 + �5                                                                                                                      �132� 

 

�B� ≡ 1 − �B� = 4 		B�	 + 	B�5 + �5                                                                                                            �133� 

 

�B� ≡ ��B ≡ 1 − �B� = 4 	B�	B + 1�5                                                                                                         �134� 

 
It deserves mentioning here that ��� is generallynot equal to ���and��B is not equal to �B�except when 	5 ≫ �5, a feasible approximation in the visible and near infrared spectral regions for many partially-

absorbing or semiconducting solid filmslaid ontotransparent dielectric substrates.Based on this practical 
model approximation (i.e., 	5 ≫ �5) and using the notations adopted for the intensity reflection and 
transmission coefficients, namely ���, ��B, ���, …. ���B, �B��, ���B… etc. and � ≡ exp�−���, onecan re-
write Equations (19) and (20) for the light plane wave propagating alongthe vfs-routeand along the opposite 
sfv-route through the film asdescribed below [28]  
 

���B = ��� + ������B�����5
1 − ������B��5 ≅   ���  − 2�����B�5 + ��B�5

1 − �����B�5                                                    �135� 

 

���B = ������B��1 − ������B��5   ≅   �1 − �����1 − ��B��1 − �����B�5                                                                         �136� 

 

�B�� = �B� + ��B������B��5
1 − ������B��5 ≅   ��B − 2 �����B�5 + ����5

1 − �����B�5                                                     �137� 

 

�B�� = ��B������1 − ������B��5   ≅ ���B ≅  �1 − �����1 − ��B��1 − �����B�5                                                               �138� 

 
Finally, let us now find the total normal-incidenceinterference-freespectral transmittance �k5~¢ ⟺���B�and specular reflectance �k5~¢ ⟺ ���B�of the afore-specified “ideal” type-B four layered structure 

having the {air/thick weakly-absorbing film/thick dielectric substrate/air}-stacking, wherein 
incoherentmultiple internal reflections inside both of the optically thick weakly-absorbing film and non-
absorbing substrate being considered. Insert the expressions of ���B, �B��, ���B, and �B��given in Equations 
(135) – (138) into the expressions of���B� and ���B�, given by Equations (91) and (92), to express (for 	5 ≫ �5)���B� and ���B�in terms of � ≡ exp�−���, ���, ��B, and �B� by the following neat formulae 
 

���B� ≅  ���  − 2�����B�5 + ��B�5
1 − �����B�5 + �B� Ï�k�ðñò��k�ðòÒ�çk�ðñòðòÒçR Ð5

1 − �B� ðòÒ�5 ðñòðòÒçR�ðñòçR
k�ðñòðòÒçR
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          ≅ ���  − 2�����B�5 + ��B�5
1 − �����B�5 + 1�1 − �����B�5� �B��1 − ����5�1 − ��B�5�5

.�1 − ��B�B�� − ������B + ����B� − 2 �����B�B���50 
 

          ≅ å��� + ��B �1 − 2���� �5
1 − �����B�5 æ + � �B��1 − �B��5�1 − �����B�5�� ∗ å ó5�5

ô − õ�5æ                 �139� 

 

���B� =  �B����B1 − �B��B�� ≅
�k�ðñò��k�ðòÒ��k�ðÒñ�çk�ðñòðòÒçR

1 − �B� ðòÒ�5 ðñòðòÒçR�ðñòçR
k�ðñòðòÒçR

 

 

          ≅ �1 − �����1 − ��B��1 − �B����1 − �����B�5� − ���B�B� + ����B��5 − 2 �����B�B��5� 

 

          ≅ �1 − �����1 − ��B��1 − �B����1 − ��B�B�� − ������B + ����B� − 2 �����B�B���5                                                  �140a� 

 
Equation (140a) can be alternatively reassembled to take the following neat form  
 

���B� ≅ ó�ô − õ�5 ≅ ó����
ô − õ��5 ��                                                                                               �140b� 

The parameters ó, ô, and õthat appear in Equations (139) and (140) are given by expressions  
 ó = �1 − �����1 − ��B��1 − �B��                                                                                                        �141� 
 ô = 1 − ��B�B�                                                                                                                                         �142� 
 õ = �����B + ����B� − 2 �����B�B�                                                                                                �143� 

 
Equations (127) –(129) give the values of the intensity reflection coefficients ���, ��B, �B�at the air-film, 
film-substrate, and substrate-air interfaces of the type-B four-layered structure that enterinto its �- and �-
formulae,given in Equations (139) and (140),in terms of the optical constants 	, �,�and 	Bof the film and 
substrate comprising this structure.  

It is worth mentioning here that Equations (140a) and (140b) are exactly analogous to thenormal-

incidence�-formulae cited (or evaluated) by Maley [28] and others [82-88], using different symbols for the 
intensity reflection and transmission coefficients, to describe the optical response of “ideal” type-B four-
layered structures. But,it should be pointed out that the normal-incidence���B�- and ���B�- formulae given in 
Equations (139) and (140) can be reachedonlyon the basis of the above-constrained model approximations. 
In other words, these formulae are only valid for an optically thick weakly-absorbing film, with the 
condition 	5 ≫ �5 being fulfilled,which is intimately laid onto thick enough dielectric (transparent) 
substrate, inside both of which incoherent multiple internal specular reflections are taking place at their 
respective interfaces 

It also deserves sayinghere that Equation (140) has been quotedby Swanepoel[35] for describing the 
total normal-incidence interference-free transmittance�ö of a semiconducting (or dielectric) film rested on a 
thick non-absorbing dielectric substrate. In addition, Swanepoel [35] has derived another form for �ö from 

the transmission curves displaying interference-fringe maxima �÷ and minima �Ö such that �ö = L�÷�Ö by 
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integrating, assuming a narrow integration region where all relevant optical parameters to be constant, the 
formula ofthe interference-fringe transmission curve between a maximum and an adjacent minimum. 
Nevertheless, the �ö-formula derived by Swanepoel [35] seems to be not usefulfor rigorous quantitative 
analysis of the transmission curves of these optical four-layered structures to deduce the absorption 
coefficient in spectral regions of dispersive optical constants of the film where transmission is low. Yet, 
reasonable consistency can be foundin the high-transmission region between the Swanepoel’sinterference-

free�ö-formula and Equation (140)derived for the normal-incidenceincoherenttransmission of type-B four-
layered structures. The latter �-formulais viable over most of the ultraviolet-visible-near infrared (UV-Vis-
NIR) portion of the electromagnetic spectrum, butonly when 	5 ≫ �5. This is expected to be observed for 
an optically thick plane-parallel stratified film deposited onto a thick dielectric substrate, or when the 
thickness of the film is not uniform,or when the film suffers from composition and clustering 
inhomogeneities. In all these cases, interference fringes would be destroyed yielding smooth experimental 
transmission curves,which can be reasonably signifiedby the full �ö-formula given in Equation (140). The 
optical absorption coefficient α�λ�of the weakly-absorbing film of such a type-B four-layered structure can 
be determined from the �ö-formula if values of its 	�λ� and κ�λ� are known at each spectral wavelength λor, 
alternatively, when one has in hand their proper dispersion formulae that are effective over a broadspectral 
wavelength range.Both numerical analysis approaches can also be employed in case of type-A four-layered 
structures.  
 
5. Conclusions 
 

In the present article, the completemathematical formulae that describe the total normal-

incidencespectral transmittance ��λ�and specular reflectance ��λ�of unsupported (free-standing in air) 
layers (three-layered structures) and of filmsdeposited on top ofsufficiently thick dielectric substrates 
immersed in atmospheric air (four-layered structures) have been expansivelyderived. These formulae are 
specifically valid for linear, isotropic, homogeneous and nonmagnetic and non-conducting (dielectric)or 
conducting layers,uponwhich monochromatic transverse electric (TE or s-polarized) or transverse magnetic 
(TM or p-polarized)light plane waves of specific spectral wavelength λare normally incident. 

In addition to exemplifyingthe main points relevant to the procedure employed in the present article to 
derive the ��λ�- and ��λ�- of “ideal” three- and four- layered structures, a number of arguments and 
approximations that are commonly implemented in the literature analysis of optical response of multi-
layered structures is worth noting and ought to be elucidated here.  

First, the coherent treatment based on the so-called ��– �� matrix analysis approach has been 
employed for multi-layered structures incorporating uniform opticallythinlayers or films, while for 
sufficiently thick films or substrates the incoherent analysis of the scalar reflection and transmission 
intensities of the structure has been utilized instead.The former treatment should be effected when the 
condition Δλ ≪ ��5 2πND⁄ �is fulfilled or, equivalently, when the optical path length ND in the layer (film) 
is much less than the coherence length dy (≡ �5 2πΔλ⁄ ) of the pseudo-monochromatic incident light beam 
whose spectral bandwidth (SBW) is Δλ. The symbols N and D designate, respectively, the index of 
refraction and geometrical thickness of the layer (film) under consideration, The latter approach is usually 
implemented when Δλ ≫ ��5 2πND⁄ �or ND ≫ dy.  

Second, the above-stated analytical optical approaches can readily be extended to derive the 
mathematical ��λ�- and ��λ�- formulae (although they are more intricate and involved) to the casesof 
pseudo-monochromaticTE- (or TM-)light plane waves that are obliquelyincident onto non-magnetic (or 
magnetic) three-layered structures as well as films laid on optically transparent or absorbing substrates (four-
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layered structures) as discussed in [53], and, in principle, for “ideal” multi-layered optical structures with a 
large number of stacked thin and/or thick layers. 

Third, foran “ideal”{air/film/thick dielectric substrate}-structurewhose film and substrate have, 
respectively, the geometrical thicknesses � and �B (≫ �), the model approximation ���B ≅ �B�� ≅ 1 −���Bcan be noted to be crudely valid if one put �5 = exp �−2��� ~ 1in the numerators of the ���B- and �B��- 
formulae, given in Equations (78) and (80), and leaving � and �5 unchanged in their denominators and in 
the corresponding���B- and �B��- formulae, given in Equations (79) and (81). This timid approximation is 
problematic if one uses the full Fabry-Pérot (FP) expression for the normal-incidence transmittance���B 
(= �B��) without eliminating � and �5[21-24, 58].  

Fourth, let one toconsider that �5 = � ≅ 0, �B = 0, 	5 = 	, �5 = � = 4π � �⁄ ≠ 0, �5 = �and �5 = � ≡ exp �−��� ≠ 0. Then, Equations (C6), (C7)and (82)givecos ∆5 ≅ cos v5 ≅ cos v =cos�4π 	� �⁄ �and ÕHoÖ ≅ �	5 − 1��	5 − 	B5�. Insert these last parametersinto Equation (79)or (81) 
toacquirea less involved formula that describes the totalnormal-incidencetransmittance ���B of an 
“ideal”type-A structure in terms of 	, 	B�< 	�, v, and � as given below 
 

���B ≡ 16	5	B��	 + 1�5�	 + 	B�5 + �5�	 − 1�5�	 − 	B�5 − 2��	5 − 1��	5 − 	B5�cos�4π 	� �⁄ �                �144� 

 
Equation (144) is exclusivelyidentical to the Manifacier’s �-formula [45]used to describe the normal-

incidence transmissionof a weakly-absorbing thin film sandwiched between two semi-infinite non-absorbing 
media. The Manifacier’s �-formula, however, does not take into account the fact that the thickness of a 
dielectric substrate onto which a thin film is being laidis notinfinite but finite- that is, a four-layered structure 
and not a three-layered structure for which Equation (144) has been derived. Thus, it cannot be used, as 
suggested by Manifacier et al. [45], to describe properly the normal-incidence transmission of a thinuniform 
film deposited ontop of a thick dielectric substrate of smooth and plane-parallel surfaces. This is because 
interference-free(incoherent) multiple light wave specular reflections at the internal surfaces of the substrate 
have significant effect on the system’s transmission (and reflection). Despite of its impractical constraint, 
Manifacier’s �-formula is frequently employed to analyzethe measured normal-incidence transmission data 
of thin semiconducting films laid onto plane-parallel opticallythick dielectric substrates [46-50].Swanepoel 
[35] critically analyzed the �-formula of Manifacier et al. [45] and proposedinstead another �-formula for 
the total optical normal-incidence transmission of a thin conducting (or dielectric) film of a geometric 
thickness �laid on top of an opticallythick dielectric substrate of a geometric thickness �B, with the film-
substrate unit being immersed in air. It can be noted that the transmission formula of Swanepoel [35]takes 
into account both of the interference and absorption of the light plane waves executing multiple internal 
reflections inside the film, where coherentformulations are realized (with the condition Δλ ≪��5 2	�⁄ �being fulfilled), in addition to the multiple internal reflections occurring in the finitely thick 
dielectric substrate, in which thesereflections were treated incoherently- that is, when Δλ ≫ ��5 2	B�B⁄ �.  

In the Swanepoel‘s paper[35], the normal-incidence optical transmittanceformulae for a weakly-
absorbing film laid onto a finitely thick dielectric substrate- that is, type-A optical system, isjust cited, in 

terms of 	, 	B, � or � ≡ exp ^– � �_ and ϕ ≡ 4π	� λ⁄ , as described below 

 

��λ� ≡ 16	5	B��	 + 1�~�	 + 	B5� +�5�	 − 1�~�	 − 	B5� − 2��	5 − 1��	5 − 	B5�cos φ                                    �145� 

 



European International Journal of Science and Technology     ISSN: 2304-9693   www.cekinfo.org.uk/EIJST 

 

 

258 

In the present article, full derivation of the formulae that describe the optical response of an ideal type-
A optical whose thin film may be dielectric or conducting were conducted to arrive at the above-cited 
Swanepoel’s ����-formula, in addition to the corresponding ����-formula, which has been quoted, using 
different notations, definitions, model approximations and formulations, in a number of literature papers[41, 
51, 52, 54, 60, 61]. Thorough derivations have been carried out to accomplishthe proper formulations of the 
spectral���� and����of such an “ideal” type-A four-layered optical structure, upon which TE light plane 
wavesof a pseudo-singlewavelength �are normally incidentat the air-film interface. The resulting final forms 
of the normal-incidence ����- and����-formulae for such an optical system are, respectively, summarized 
in Equation (106) or Equation (145) (Swanepoel’s ����-formula) and Equation (112).  

Fifth, in the view of the model approximations���B ≅ �B�� ≅ 1 − ���B, Equations (91) and (92), which 
determine the total normal-incidence specular reflectance ���B� and transmittance ���B� of an 
“ideal”{air/thin film/thick dielectric substrate/air}-structure, can be shown to have the forms  
 

���B� = ���B +  �B����B5
1 − �B��B�� =  �1 − ���B� + �B��2 ���B − 1�1 − �B��1 − ���B�                                                      �146� 

 

���B� = �B����B1 − �B��B�� =  �B����B1 − �B��1 − ���B�                                                                                        �147� 

 
Inserting the explicit values of ���Bgiven in Equation (79)and of �B� and �B�given in Equations(89) and 

(90), respectively, and putting � = �B = 0but� ≠ 0, into Equation (147), onecan arrive at a rather imprecise 
expression for the total normal-incidence spectral transmittance ���� of an {air/thin film/thick dielectric 

substrate/air}-structure as given below  
 ����
= 16	B	5�Ø�	 + 1�5�	 + 	B�5Ù − 2�Ø2	5�	B − 1�5 − �	5 − 1��	5 − 	B5�cos φÙ + Ø�	 − 1�5�	 − 	B�5Ù�5      �148� 

 
 

In view of the above-specifiedmodel approximations, the corresponding formula that describes the total 
normal-incidence specular reflectance ���� of this structure is a little involved. Nevertheless, substituting 
the value of �B� given in Equation (89) and ���Bgiven in Equation(79) into Equation (146), one can get an ����-expression of the form  
 

���� = 4nB + �nB5 − 6nB + 1����B4nB + �nB − 1�5���B  

 

= Ø�	 + 1�5�	 + 	B�5Ù + Ø�	 − 1�5�	 − 	B�5Ù�5 − 2�Ø2	5�	B5 − 6	B + 1� − �	5 − 1��	5 − 	B5�cos ϕÙØ�	 + 1�5�	 + 	B�5Ù − 2�Ø2	5�	B − 1�5 − �	5 − 1��	5 − 	B5�cos ϕÙ + Ø�	 − 1�5�	 − 	B�5Ù�5  

                                                                                                                                                                                         �149� 
 

It should be stressed again that the ����-expression described in Equation (148) has been derived in the 
present work using the assumptions���B ≅ �B�� ≅ 1 − ���B, a model approximation that can only be true 
when one set the factor exp  �−2��� ~ 1 in only the numerators of the original ���B- and �B��- formulae 
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given in Equations (78) and (80). These strict assumptions were adopted by Šantić and Scholz [58] who 
derived a ����-expression (Equation (4) in their paper [58]), which is exactlysimilarto the above-
acquiredEquation (148) for the total normal-incidence transmittance ���� (= ���B�) of an “ideal” type-A 
optical structure. The transmission formula of Šantić and Scholz [58] and the transmission formula 
described in Equation (148) are bothdissimilar to the well-known Swanepoel’s formula already derived in 
Equation (145). It is worth noting here that Šantić and Scholz [58] have re-examined and criticized 
Swanepoel’s ����-expression [35]given in Equation (145), which they also claimedthat they couldn’t derive 
it.  

In principle, Equation (148) or the identical ����-expression of Šantić and Scholz [58] coincides with 
the exactSwanepoel’s formula given in Equation (145) only and only under the conditions � ≅ 0, � ≅ 1, a 
situation that is considered to be true when the thin film of the above-specified four-layered structure is a 
perfectlytransparent dielectric. However, when optical absorption in the filmis significant, Swanepoel’s ����-formula is exact and realistic, so that it can magnificently be employed, as it is the case since few 
decades, for describing the total normal-incidence spectral transmittance ����of numerous “ideal” type-A 
optical systems. Indeed, Swanepoel‘s ����-formula given in Equation (145)is widely used for analyzing the 
measured normal-incidence ����- �data of such layered structures on the basis of the so-called envelope 

method, developed by Manifacier et al. [45] and became well known after Swanepoel [35]. 
In the present author’s opinion, the crude approximation made by Šantić and Scholz [58] and here to 

arrive at Equation (148) is indeed debatable; thus,these formulas will not lead to the correct analysis of the 
normal-incidence transmission data except under the restricted hypothetical conditions described previously. 
In order to obtain a more accurate, though a little involved, description of both the total normal-incidence 
specular reflectance ���B� and transmittance ���B� of the type-A optical structure, one had to go back to their 
original expressions described by Equations (106) and (112), in which one should insert the unlike 
functional forms of ���B and �B�� given in Equations (78) and (80) for the vfs- and sfv- directions of light 
propagation through the film. The values of the corresponding transmissivities ���B and �B�� are identically 
equal when medium 1 is vacuum and the substrate is non-absorbing (dielectric); thus, pose no further 
complications in the procedure of calculating the total optical response of the above-described four-layered 
structure.  

Sixth, in the present article, the complete formulae that describe both of the total normal-incidence 
interference-free optical transmission �öand reflection �öof an opticallythick absorbing film laid on an 
opticallythicktransparentsubstrate, the free surfaces of which are bounded by air (type-B four-layered 
structure), werealso derived in the framework of incoherent description of the internal multiple specular 
reflections taking place inside both of the film and substrate. The achieved normal-incidence�ö- and �ö- 
formulae of this type-B four-layered structureare fully described in Equations (139) and (140), with the �ö-
formula beingremarkably alike to that reportedin literature [28, 82-88].In the optical and infrared regions of 
the spectrum, this �ö-formula may beemployed to determine, within a somewhat large uncertainty, the 
absorption coefficient α�λ� of thick films from their interference-free transmission curves, but is not 
convenient in case of thin or thick films whose transmission spectra display interference fringes [28, 82-88].  

Seventh, one must recall that the index of refraction 	�λ� and extinction coefficient ��λ� of the film 
(slab) material, or its optical absorption coefficient ��λ��≡ 4π��λ� λ⁄ ), are generally varying functions in 
the light wavelength λ- that is, these optical parameters are dispersive quantities. The theoretical or 
empirical expressions (dispersion relations) that describe the wavelength- dependence of optical constants 
normally contain twoor moreunknown constants. Thus,to perform computational curve-fitting of the 
measured reflectance ��λ�- and transmittance ��λ�- data ofeven a simple {air/thin film/air}-structure to the 
theoretical Equations (78) and (79), in which 	B = 1, �B = 0,.��λ�05 ≪ .	�λ�05, ��λ� ≡ exp �−��λ���, 
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and cos ∆k = cos ∆kÑ = cos�4π 	�λ�� �⁄ � ≅ cos ∆5 are considered, one must insert the proper dispersion 
relations of the optical parameters into the resulting ��λ�- and ��λ�- formulae to determine these unknown 
constants, which are often taken as the adjustable fitting parameters. Curve-fitting of optical data of 
structures having higher number of layers to their respective complex theoretical ��λ�- and ��λ�- 
formulaewill be more elaborate, as their optical constants are also complicatedly dependent on the energy of 
incident light photons. Further, one has to bear in mind that there are a variety of theoretical 
(empirical)dispersion formulations of several unknown constants that are valid in different regions of the 
spectrum, depending on the layer’s material. This implies that the foundvalues of the adjustable fitting 
parameters would be controversial and sometimes doubtful, since there is no unique theoretical (empirical) 
model for describing their actual dispersion.  

Besides, the traditional non-linear curve-fitting procedures often yield multi-solutions with different 
values for the adjustable fitting parameters, with their computed values may also be unrealistic and have no 
physical meaning. Thus, if one wishes to determine accurate and realistic values of theadjustable parameters, 
and hence the optical constants of a slab from their measured optical spectra, a powerful non-linear curve-
fitting program that gives global solution for the function minimized must be employed. In the simplest 
multi-layered optical structures like, for example, an air-supported (free-standing in air) weakly-absorbing 
thick film (or slab) of known geometrical thickness, however, no need for a detailed non-linear curve-fitting 
procedures and one can readily solve analytically, under the model approximation .��λ�05 ≪ .	�λ�05, the 
theoretical ��λ�- and ��λ�- formulae obtained from Equations (39) and (40)to calculate the values of 	�λ� 
and ��λ�, at each spectral wavelength λ, in terms of the measured ��λ�- and ��λ�- data [80]. In “ideal” type-
A four-layered structures, one can also employ analytical techniques that are based on the so-called envelope 
method [35] to calculate the various optical parameters of its film, but this optical analytical approach is 
limited to films whose ��λ�and ��λ� spectra display a number of interference fringes. More details on the 
numerical and analytical solutions of the formulations describing the optical spectra of multi-layered spectra 
will not be given here further.  
 

Appendix A: Format of the obliquely-incidence Fresnel’s complex amplitude reflection and 

transmission coefficients at the interface of two dissimilar conducting media 
 

The standardsets of boundary conditions imposed by Maxwell’s equations on the components of electric 
and magnetic fields that are tangential and normal (perpendicular) to the interface (boundary) of two 
unlikeintimately adjacent conducting or non-conducting (dielectric)media are well established[9, 14-17, 20-
24, 74-76]. In the frame of the��– �� matrix method [20-23, 29-33, 76], however, it is appropriate to re-
write these setsof boundary conditions in a unique compact matrix layout which will be formally similar for 
both TE and TM electromagnetic (EM) plane waves at any arbitrary angle of incidence. To realize such a 
reformulation, the boundary conditions will be algebraicallymanipulated so that the information about 
angles of incidence and refraction of alinearly-polarized light plane wave hitting an interface and the state of 
wave polarization are all embodied into an effective indexofrefraction. This helps one to rephrase the diverse 
equations of the ratios of the real EMfields of the plane waves reflected and transmitted from a layered 
structure to the respective real EM-field of the incident plane wave in same matrix form, whether the EM 
plane wave is a TE or TM plane wave- that is, s- or p- linearly polarized wave.  

To see how this notation is generated, the differently-formatted expressions of the familiar Fresnel’s 
complex amplitude reflection and transmission coefficients for the s-(TE) and p- (TM)light plane waves 
obliquely incident at the interface of two dissimilar adjacent media have to be reduced to a couple of 
algebraic expressions of similar arrangement for the two states of wave polarization [9, 21, 27, 29, 32]. Such 
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identical mathematical layouts for both the obliquely-incidentreflection and transmission coefficients of the 
s- and p- plane waves can be realizedby the use of an appropriate expression for the layer’s effective index 
of refraction, which differs for the two states of wave polarization since the reflection and transmission of 
the components of the respective EM fields are governed by unlike laws [9-11, 13-17, 20-24, 74-76].  

The required TE- or TM- formulas of the obliquely-incidentreflection and transmission coefficients will 
beformally similar to the normal-incidencereflection and transmission coefficients that are already described 
in the text byEquations (8) and (9), but with the normal complex indices of refraction of layersbeing 
replaced by their respective effectiverefractive indices.In the present discussion, the solid layers (whether 
dielectric or conducting) will bepresumedto be linear, isotropic, homogeneous and nonmagnetic. Further, the 
incoming electromagnetic radiation will be supposed to be pseudo-monochromatic of a practically single 
angular frequency +, that is- of a virtually well-defined spectral wavelength � (≡ 2π2 +⁄ , where c is the 
speed of light in free space).  

Now, consider a monochromatic TE lightplane wave travelling in the medium dthat hits the interface of 
two dissimilar stratified adjacent media d and f of different normal complex indices of refraction 	eand 	g. 

Further, let the complex propagation vector '( eof the wave in the d-medium to be inclined at an angle of 

incidence �́e, with the real unit-vector rnormal to the boundary being pointing from the first into the second 
medium (here, taken to be in the direction of ýþ, a real unit-vector along the positivez-axis, the direction of 
stratification of the layers). Sucha TE light plane wave will in general be partly reflected specularly back 

into medium d with a complex propagation vector '( eÑfor the reflected TE light plane wave inclined to r at an 

angle of reflection �́eÑ and to be partly refracted into medium f with a complex propagation vector '( gfor 

the refracted TE light plane wave making an angle of refraction �́g with the normal to thed-fboundary.  
It is well known thatfor the case of dielectric stratified media, the indices of refraction 	e and 	g as 

well as the propagation vectors 'e, 'eÑ, and 'gof, respectively, the incident, reflected and transmitted light 
plane waves at thed-fboundary and the angles of incidence, reflection, and transmission é, éÑ, and ´g are 
all real quantities; thus, such angles have geometrical meaning since they can be drawn on a diagram as 
depicted in Figure A1 for an obliquely-incidence TE light plane wave.However, if mediadand fare 
conductingwith complex indices of refraction 	eand 	g, the complex angles of incidence and refraction 

cannot be drawn geometrically,yetthey are still connected by the modified Snell’s law 	e sin �́e = 	g sin �́g. 
The derivation of algebraic formulations incorporating complex quantities, such as the Fresnel’s complex 
reflection and transmission coefficients and of related optical quantities, do not appeal to the geometry of 
the figure showing the reflection and refraction of a light plane wave incident at the interface between two 
contactingdielectric and/or conducting media and remain formally correct. 

It is not difficult to show that the four vectors '( e, '( eÑ, '( g, and r are all coplanarlying in plane called the 
plane of incidence (taken here to be the Cartesian xz-plane), with the direction of the normalto this planeis 
determined from the direction of the cross-product of r �= ýþ� and any of these complex wave propagation 

vectors in the sense thatr x '( e,r x '( eÑ and r x '( gor in the direction of a real unit-vector ý� ≡ ^r x '( e_ 4k� e sin �́e4m [9, 76].The complex angles �́e, �́eÑ and �́gshould also satisfy the relations �́eÑ ≡ �́e 
(the law of reflection) and k� e sin �́e = k� g sin �́g or, since �� ≡ 	 + 2⁄ , 	e sin �́e = 	g sin �́g, the 
accreditedmodifiedSnell’s law of refraction [9, 76]. 

As commonly known, none of the above-statedoptical consequences depends on the boundary 
conditions on theelectromagnetic plane-wave electric and magnetic fields derived from the fundamental 

Maxwell’s Equations. The complex electric-field amplitude vectors ��eB, ��eBÑ and ��gB associated with 
themonochromatic TE (s-polarized) light plane waves incident, reflected, and transmitted at the prescribed 
interface of the two differentd and f media are all perpendicular to the plane of incidence. In other words, 
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they are all perpendicular to the complex propagation vectors '( e, '( eÑ, and '( g, as well as to the real unit-
vector rthat is normal to thed-f boundary(here, the Cartesian xy-plane). This implies that the x- and z- 
components of the electric-field amplitude vectors of the incident, reflected and transmitted monochromatic 

TE plane waves are all vanishing in the plane of incidence (here is the Cartesianxz-plane); thus, ��eB =Ae��eB = ý���eB, ��eBÑ = AeÑ��eBÑ = ý���eBÑ and ��gB = Ag��gB = ý���gB. The corresponding magnetic-field vector 

amplitudes of these TE plane waves can be found from the relation �� = ^'(  x ��_ +⁄ , with the real parts of 

their vector amplitudes of the respective wave are certainly perpendicular to each other. 
 

 
 

Figure A1.A sketch of the obliquely-incidence reflection and refraction of a monochromatic s-polarized(TE) 
electromagnetic plane wave at theinterface (the xy-plane) of two unlikedielectric media dand f. The xz-

plane is the plane of incidence and the electric-field vectors�eB, �eBÑ and �gB are directed into page, with the 
vectors ', �, � (in that order) form a right-handed orthogonal set.  
 

Apply the customary boundary conditions [9-17, 74-76] imposed on the various components of both the 
electric-and magnetic-field vector amplitudes that are tangential and perpendicular to the interface of the 
media d and f (renamed here as¥and ¥ + 1, respectively) to find the format of the Fresnel’s complex 

electric-field amplitude reflection and transmission coefficients �l̂eg�B ≡ ^��e
Ñ /��eB_ and ��̂eg�B ≡ ^��gB/��eB_ 

for a TE light plane wave obliquely incidentat the prescribed interface. In general, the components of any 

electric-field and magnetic-field vector amplitudes �� and �� in a medium which are tangential to its boundary 

with another adjoining medium are given by the vector quantities:;– r x ^r x ��_<and ;– r x ^r x ��_<, while 

their vector components normal to such a boundary are determined from the vector quantities r^r. ��_ and r^r. ��_ [9, 74-76].  

For a TE (s-polarized) electromagnetic plane wave hitting the interface of two adjacent dissimilar media 
at oblique incidence, neither the incident plane TE wave nor the associated TE plane waves that are 
reflected from and transmitted through this interface have electric-field components normal to this boundary 
(or lying in the plane of incidence). Hence, the continuity equation on the electric-field components normal 

to the boundary is of no use.  
On the other hand, the continuity condition on the tangential components of the electric-field vector 

amplitudes ��eB = ý���eB, ��eBÑ = ý���eBÑ and ��gB = ý���gB of the incident, reflected and transmitted TE plane 



European International Journal of Science and Technology                       Vol. 2 No. 5                    June 2013 

 

 

263 

waves at such interface (the xy-plane) turns out to be satisfied automatically. Taking r = +ýþ and assuming 
that the transmitted wave propagating throughout the f-medium is not reflected back to its boundary 
(interface) with the d-medium, then the tangential(to the boundary) components of the electric-field vector 

amplitudes of these TE plane waves are mutually connected to each otherby the simple relationship  
 ��eB + ��eBÑ = ��gB�A1� 
 

Since the conducting media under consideration is presumed to be linear, isotropic, homogeneous and 

nonmagnetic, the continuity of the tangential(to the boundary) components ;– r x ^r x ��_< of the magnetic-

field vector amplitudes of these TE light plane waves on either side of the d- f boundaryyields, with the z-

component of '( eÑbeing pointingalong the direction of the negativez-axis, another independent 

expression,recalling that �� = ^'(  x ��_ +⁄ , with �� ≡ 	 + 2⁄ , relating the corresponding TEwave electric-field 

vector amplitudes,of the form 
 	e cos �́e ^��eB − �� ÑeB_ = 	g cos �́g ��gB�A2� 

 
Solve Equations (A1) and (A2) to find the Fresnel’s reflection and transmission coefficients �l̂eg�B ≡^��eBÑ /��eB_ and ��̂eg�B ≡ ^��gB/��eB_for a TE light plane wave that is obliquely incident at the interface of the 

two media dand f. The result can be expressed in terms of a complexeffectiveindex of refraction�̂� of the 

medium �, defined as�̂£ ≡ 	£ cos �́£ , by the formulae [9, 21]  

 

l̂¤ = �l̂eg�B = 	e cos �́e − 	g cos �́g	e cos �́e + 	g cos �́g = �̂¤ − �̂¤�k�̂¤ + �̂¤�k                                                                                 �A3� 

 

�̂¤ = ��̂eg�B = 2 	e cos �́e	e cos �́e + 	g cos �́Ö = 2 �̂¤�̂¤ + �̂¤�k                                                                                 �A4� 

 
The corresponding Fresnel’s complex electric-field amplitude reflection and transmission coefficients for 
the oppositedirection of propagation of the TE light plane wave through the interface of these adjoining d- 
and f-media can be shownto satisfy the expressions  
 

l̂¤Ñ = �l̂ge�B = − l̂¤ = 	g cos �́g − 	e cos �́e	e cos �́e + 	g cos �́g = �̂¤�k − �̂¤�̂¤ + �̂¤�k                                                                   �A5� 

 

�̂¤Ñ = ��̂ge�B = 2 	g cos �́g	e cos �́e + 	g cos �́Ö = 2 �̂¤�k�̂¤ + �̂¤�k                                                                                 �A6� 

 
For a linearly p-polarized electromagnetic plane wave hitting an interface of two dissimilar media d and f at oblique incidence, the electric-field vector amplitudes ��e?, ��e?Ñ and ��g? of the incident, reflected and 

transmitted p-polarized plane waves are allparallel to (or lie in) the plane of incidence, which contains their 

complex wave propagation vectors '( e, '( eÑ, '( gand r. Conventionally, the Fresnel’s complex amplitude 
coefficients of reflection and transmission at the interface of two different media are expressed in terms of 
the ratios of amplitudes of the electric (not magnetic) vector fields of the reflected and transmitted plane 
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waves to the amplitude of the electric vector field of the incident plane wave. Specifically, the Fresnel’s 
coefficients for reflection and transmission of p-polarizedelectromagneticplane waves at suchd-finterface 

are often expressed by the relations:�l̂eg�? ≡ ^��e?Ñ /��e?_ and ��̂eg�? ≡ ^��g?/��e?_ [9-17, 20-24, 74-76].  

It is known that the fields ����, �� and ����, �� of a time-harmonic monochromaticelectromagnetic plane 
wave of an angular frequency + travelling in a linear and non-magnetic conducting medium of a complex 

index of refraction 	are both perpendicular (if ϵ/ ≠ 0), to its propagation vector '(  (≡ '/ − �'-, where '/ 

and '- are its real and imaginary vector parts). That is, the wave is transverse ('( . �� = 0 = '( . ��), where ��  

and �� arethe complex vector amplitudes of ����, �� and ����, �� and which are linked by �� = ^'(  x ��_/+or �� = −&+ ^'( . '( _⁄ ,^'(  x ��_ = −�2 +⁄ 	5�^'(  x ��_.But, ����, �� and ����, �� and their real partsare 

perpendicularto each other if their plane wave is only linearly polarizedeven if the directions of '/ and '-are different.  
Thus, when a linearly p-polarized monochromatic electromagneticplane waveisobliquelyor 

normallyincidentatthe interface of two dissimilar linear, homogeneous and nonmagnetic conductingd- andf- 
media,its magnetic-field vector amplitude and those of the correspondingreflected and transmitted linearly 
p-polarized plane waves will be perpendicular to the plane of incidence, which contains, in addition to r, 

their propagation wave vectors '( e, '( eÑ, and '( g. This is why a linearly p-polarized plane electromagnetic 

wave is often called a transverse magnetic (TM) wave. So, the magnetic-field vector amplitudes ��eB, ��eBÑ and ��gB of the incident, reflected and transmitted TM plane waves are all normal to the plane of incidence (the 

xz-plane) and can readily be expressed by the relationships ��eB = ý���eB, ��eBÑ = ý���eBÑ and ��gB = ý���gB.  

The commonly adopted derivation of �l̂eg�? and ��̂eg�? coefficients for a monochromatic 

TMelectromagnetic plane wave hitting the interface of two media d and f is based on imposing the 
boundary conditions on the components of its respective fields tangential and normal to the interface to 

obtain the formulae relating the magnetic-field vector amplitudes ��eB, ��eBÑ and ��gB. The traditional way is 

then to write the Fresnel’s coefficients �l̂eg�? and ��̂eg�? as explicit ratios of the magnitudes of the ��-

vectors of the TM plane waves as�l̂eg�? ≡ ^��e?Ñ /��e?_ ≡ ^��eBÑ /��eB_and ��̂eg�? ≡ ^��g?/��e?_ ≡ �	e 	g⁄ �^��gB/��eB_[9]. To generalize the ��– ��transfer matrix method so the 

general formulations describing the optical response of a multi-layered structure will be formally identical 

for both the TE and TM plane waves, �l̂eg�? and ��̂eg�?shouldbe expressed in terms ofeffective indices of 

refractionthat are different to those adopted in Equations (A3) – (A6) for the TE plane wave case, where an 

effective index of refraction for the medium �of the form�̂£ ≡ 	£ cos �́£isused. This is simply attained by 

defining the Fresnel’s complex amplitude coefficients of reflection and transmission of a linearly p-
polarized (TM) plane wave obliquely incident at the d-finterface as explicit ratios of the magnetic-field (not 

electric-field) vector amplitudes ��e
Ñ  and ��g
 of the reflected and transmitted TM plane waves to the 

magnetic-field vector ��e
 of the incident TM plane wave, viz.:�l̂eg�? ≡ ^��e
Ñ /��e
_ and ��̂eg�? ≡ ^��g
/
�d�[9].  

Impose the boundary conditions on the field components of the TM plane waves incident, reflected and 
transmitted at the interface of the two non-magneticd- and f-media of complex indices of refraction 	e 
and	gthat are tangential and normal to their interfaceto obtain a couple of independent relations connecting 

their��eB, ��eBÑ and ��gB. Recalling that the vectors '( e, '( eÑ, '( g, and r are all lying in the plane of incidence, this 

can berealized by using the relation �� = −&+ ^'( . '( _⁄ ,^'(  x ��_ = −�2 +⁄ 	5�^'(  x ��_, in conjunction with the 

familiar BAC-CAB rule; so, '( e . ��eB = '( eÑ . ��eBÑ = '( g. ��gB = 0. The results can be expressed by the following 
formulae  
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 cos �́e	e ^	� eB − 	�ÑeB_ = cos �́g	g ��gB                                                                                                          �A7� 

 

	� eB + 	� eBÑ = 	�gB                                                                                                                                          �A8� 
 

To formulate the Fresnel’s reflection and transmission coefficients of a TMelectromagnetic plane wave 
hitting the interface of two different media at oblique incidence, I shall refer to the effectiveindexofrefraction 

of a medium �as
£ = cos �́£/	£[9]and not
£ = 	£/ cos �́£(quoted in reference [21]), which is not suitable for 

describing allTM-wave Fresnel’s reflection and transmission coefficients. Solving Equations (A7) and (A8) 

with
£ = cos �́£/	£, one can express theseobliquely incident TM-wave Fresnel’s coefficients at the interface 

of the media d (⇒ ¥) and f (⇒ ¥ + 1), for the opposite directions of wave propagation through suchd- finterface, by [9] 
 

l̂¤ = �l̂eg�? =
HoB��� − HoB�����HoB��� + HoB�����

= 
¤ − 
¤�k
¤ + 
¤�k                                                                                          �A9� 

 

l̂¤Ñ = �l̂ge�? = − l̂¤ =
HoB����� − HoB���HoB��� + HoB�����

= 
¤�k − 
¤
¤ + 
¤�k                                                                            �A10� 

 

�̂¤ = ��̂eg�? = 2 HoB���HoB��� + HoB�����
= 2 
¤
¤ + 
¤�k                                                                                          �A11� 

 

�̂¤Ñ = ��̂ge�? = 2 HoB�����HoB��� + HoB�����
= 2 
¤�k
¤ + 
¤�k                                                                                          �A12� 

 
Note that if the numerator of the middle term of Equation (A11) is multipliedby the quotient �	e 	g⁄ �, 

onecan getthe traditional expression cited for the Fresnel’s complex amplitude transmission coefficient at 
the interface of the two dissimilar media d and f when ��̂eg�?is defined relative to the TMelectric-field 

vector amplitudes as��̂eg�? ≡ ^��g?/��e?_[9, 20-24, 74-76].  

Appendix B: The ��– ��transfer matrix for transmission and specular reflection coefficients of multi-

layered structures 
 

Writing the Fresnel’s complex amplitude reflection and transmission coefficients of bothTE and TM 
monochromatic electromagnetic plane waves that are obliquely-incident at the interface of two unlike media 
in identical formatsincluding only theirrespective effective indices of refraction will allow the use of 
unlimited number of interfaces of adjoining stratified layers of a multi-layered structure. This common 
notation is valuable in the development of the ��– ��transfer matrix method [20-23, 29-33, 76]andother 
methods[9-11]. These Fresnel’s complex reflection and transmission coefficients will bedefined asthe ratios 
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of the amplitudes of electric-field vectors and of the amplitudes of magnetic-field vectors in the TE and TM 
cases, respectively[9].  

Now, consider a pile of �-layered structure with (� − 1) interfaces separating � different layers with 
normal complex indices of refraction 	¤ (¥ = 1, 2, …..� – 1,and�), with 	kbeing the index of refraction of the 
firstlayer in which a light plane wave is propagating toward its interface to layer 2 of anindex of refraction 	5etc. Multiple internal specular reflections may occur inside all layers and if one layer isoptically thin, 
interference effects between these reflections are significant. In a pile of � successive different layers, the 
second layer to the next¥�ℎ-layer has two interfaces which are formally identical for all in-between layers of 
the entire structure. Thus,one needs only to configure the problem for a generalized interface and then repeat 
the calculation (� − 1) times to include the effect of the (� − 1) interfaces of the entire stack of � layers, as 
shown in Figure B1.  
 

 
Figure B1.A geometrical sketch for light plane waves propagating in homogeneous different layers, in 
which light waves execute multiple internal reflections and/or absorption  

Recall here that the state of plane-wave polarization and both the angles of incidence and refraction are 
hidden in the new common format, in which the Fresnel’s complex amplitude reflection and transmission 
coefficients are defined in terms of the effective indices of refraction of the media, as described in Equations 
(A3) – (A6) and Equations (A9) – (A12). Then, all reflected and transmitted monochromatic TE (or TM) 
lightplane waves can be represented by their respective fields normally incident at each side of the interface 
of two adjacent media, as depicted in Figure B1 for the case of TE light waves.Impose, the boundary 
conditions on the electric fields reflected and transmitted through a generalized interface ofthe two media ¥ 
and ¥ + 1of Figure B1to obtain the formulations relating the electric fields of the incident, reflected, 

transmitted TE plane waves at such interface in terms of �̂¤ ≡ 	¤ cos �́¤ and �̂¤�k ≡ 	¤�k cos �́¤�kas[21] 
 

�̂¤^���- − ���- _ = �̂¤�k����-�k − ���-�k�                                                                                                          �B1� 

 ��B�- + ��B�- = ��B�-�k + ��B�-�k                                                                                                                          �B2� 
 
Solution of Equations (B1) and (B2) yields a couple of relations for the electric-field components of the 
obliquely-incidence monochromatics-polarized (TE) light plane wave of the forms  
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��B�- = N�̂- + �̂-�k2 �̂- P ��B�-�k + N�̂- − �̂-�k2 �̂- P ��B�-�k                                                                                          �B3� 

 

��B�- = N�̂- − �̂-�k2 �̂- P ��B�-�k + N�̂- + �̂-�k2 �̂- P ��B�-�k                                                                                          �B4� 

 
Using the formats ofthe Fresnel’s complex electric-field amplitude reflection and transmission coefficients 
described in Equations (A3) and (A6) for TE light plane waves, one can simplify the notationsof Equations 
(B3) and (B4) to give two general independent equations of the form[21]  
 

���- = ���-�k + l̂-���-�k
�̂-                                                                                                                                     �B5� 

 

���- = l̂-���-�k + ���-�k
�̂-                                                                                                                                     �B6� 

 
Equations (B5) and (B6) can be combined into a uniquematrixequation for the interface separating two 

successive dissimilar optical media designated by the letters ¥and ¥ + 1 of the form 
 

����-���- � =
�
��

1�̂-
l̂-�̂-l̂-�̂-
1�̂-�
������-�k

���-�k�                                                                                                                     �B7� 

 
Normally, Equation (B7) is written in a more compact matrix formulation as below 
 ��- ≡ ��-��-�k                                                                                                                                                   �B8� 
 

The operator ��-in Equation (B8) represents the ith-interface Fresnel’s coefficients matrix, which joins the 
Fresnel’s complex reflection and transmission coefficients l̂- and �̂- at the ith-interface of the ¥and ¥ + 1 

layers with l̂- = l̂-,   -�k and �̂- = �̂-,   -�k in the manner given below   

 

��- =
�
��

1�̂-
l̂-�̂-l̂-�̂-
1�̂-�
��                                                                                                                                           �B9� 

 
When the electromagnetic planewave crossesan interface tothe neighboring layer, it could be partially 

absorbed and/or interfere with the back and forth reflected plane waves traversing the layer. Both of these 

phenomena are often incorporated in terms of a complex phase change ©(of the electric field (or magnetic 
field) of the light plane wave traversing the layer. In general, for a lightplane wave of anangular frequency ω 

(wavelength λ!) impinging at an angle of incidence θ�at an interface of a layer ofthickness � and a complex 

index of refraction 	 = 	 − ��, ©( produced upon a single traversal of the wave in the layer is ©( =��ω 2⁄ �	 cos θ� = �2 π� λ!⁄ � ∗ � − �®�, where  and ® are real quantities which are, respectively, equal to 
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	 and � at normal incidence [9, 76]. This helps, as discussed shortly,to find the wave field quantities Õ(�and Õ(�, which are clearlydepicted as Õ(�5  and Õ(�5 for layer2 of Figure B1.  

The electromagnetic wave fields Õ(�5  and ���5 in a particular conducting (or dielectric) layer (layer 2 in 

Figure B1) must thus be modified by the phase shift (change) ©(5 they experience after traversing once 
through layer 2that has a finite geometrical thickness �5 and a normal complex index of refraction 	5. For 
the monochromatic TE electromagnetic plane waves that are incident from the semi-infinite media 1 (Layer 
1 in Figure B1) atits interface to layer 2, these wave-field quantities can then be expressed by the following 
set of relations   
 Õ(�5 ≡ �£¦�R���5���5 ≡ �£¦�RÕ(�5         or       Õ(�5 ≡ ��£¦�R���5                                                �B10� 
 
Equation (B10) can easily be manipulated in terms of a simple 2 x 2 matrixof the form  
 

�Õ(�5Õ(�5 � = N�£¦�R    00 ��£¦�RP ����5���5�                                                                                                              �B11� 

 
For the layer 2 in question, Equation (B11) can be written in a more compact matrix form as  
 

��5 ≡ ¡�5��5                                                                                                                                                   �B12� 
 

One can generalize Equation (B12) for the ith-layeras ��- ≡ ¡�-��-, with the so-called transmission matrix ¡�-being defined by the following matrix expression  
 

¡�- = N�£¦�§    00 ��£¦�§P                                                                                                                                 �B13� 

 
The final result for a stack of �successive stratified layers with� − 1intimately contacted smoothand 

homogeneous interfaces, with the layers index � = 2, 3, 4, … …., can be formulated in a single general matrix 
equation as given by  
 

����k���k� = � ����������                                                                                                                                        �B14� 

 

The fields ���k and ���kare, respectively, the electric field components travelling through and reflected from 

the first (incident) layer, while the fields ���� and ����are, respectively, the electric field components 

transmitted into and reflected from the final (last) layer of the ��ℎ-layered stack.  
Let us now find the expression that represents the matrix � for the �� − 1� interfaces separating the � 

dissimilar dielectric and/or conducting stratified layers of this ��ℎ-layered stack, including the (first) layer 
from which the light wave is being incident onto the second layer of the structure. Thisgeneral matrix � 
(usually referred to as the characteristic matrix of the �-layered structure) can be evaluated from theoverall 

product of theith-layerFresnel’scoefficient matrix ��- and transmission matrix ¡�-as given below  
 � ≡ ��k ∘ ¡�5 ∘ ��5 ∘ ¡�~ ∘ ��~ ∘ ¡�¢ ∘ ��¢ ∘ … … … … … … ∘ ��£�5 ∘ ¡�£�k ∘ ��£�k                                       �B15� 
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To find the expressions describing the total transmittance and specular reflectance of an “ideal”�-
layered stack, itis more convenient to evaluate separately acharacteristic matrix ¯ ≡ ¡ ∗ �for each of the 
structure �� − 1� layers following the first (incident) layer, whichis normally a semi-infinite, linear, 
homogeneous, nonmagnetic, and dielectric mediawith a constant refractive index. To be more precise, one 
should bear in mind that in the present treatment I have taken the index ¥ ≥ 2 and the corresponding 

Fresnel’s complex amplitude reflection and transmission coefficients l̂- and �̂- represent, respectively, l̂-,   -�k 

and �̂-,   -�k. Each individual characteristicmatrix¯- ≡ ¡-�- of the ith-layer of this f-layered stack can be 

expressed in a simple manner as described below  
 

¯- ≡ ¡-�- = N�£¦�§    00 ��£¦�§P
�
��

1�̂-
l̂-�̂-l̂-�̂-
1�̂-�
�� =

�
��

�£¦�§�̂-
l̂-�£¦�§�̂-l̂-��£¦�§�̂-
��£¦�§�̂- �

�� = 1�̂- � �£¦�§ l̂-�£¦�§
l̂-��£¦�§ ��£¦�§ �             �B16� 

 
The characteristic matrix¯- of each ith-layer (¥ ≥ 2) of the �-layered structure involves its own complex 

phase-change angle ©(-(≡ Re ©(- − � Im ©(-), with the imaginary part Im ©(-being integrated in the 
opticalabsorption terms of the formulas describing the total intensity of the transmitted and specularly 
reflected light signals produced by the optical system in question. In terms of the characteristic matrix of the 
individual in-between layers of an �-layered structure, the overall characteristic matrix � of the structure can 
now be given by the compact expression  
 

� ≡ ��k ∘ ± ¯¤
¤�£�k

¤�5
                                                                                                                                    �B17� 

 
The overall (net) electric-field amplitude specular reflection coefficient l̂²³n and transmission coefficient �̂²³nof the whole multi-layered stack, relative to the amplitude of the electric-field amplitude of the 

monochromatic TE electromagnetic plane wave incident on the structure, can then be evaluated from the 
following relations  
 

l̂²³n ≡ ���k���k                                                                                                                                                      �B18� 

 

�̂²³n ≡ �������k                                                                                                                                                      �B19� 

 
In a strictly analogous way one can treat the Fresnel’s reflection and transmission of monochromatic p-

polarized (TM) plane electromagnetic waves obliquely incident onto a �-layered structure. This can be 

implemented by replacing the respective electric-field amplitudes ��±¤  of Figure B1 by the corresponding 

magnetic-field amplitudes ��±¤  and evaluating all the expressions required to arrive at the final expression 

describing the total TM reflection and transmission coefficients l̂²³n ≡ ���k ���k⁄  and �̂²³n ≡ ���� ���km of the 

entire structure. However, one should evaluate the characteristic matrix ¯- ≡ ¡-�- of each ith-layer of the 
structure by making use of the Fresnel’s reflection and transmission coefficients l̂- and �̂- corresponding to 
the TM case that are instead described in Equations (A9) and (A12).  
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Appendix C: Expressions of the normal-incidencevalues of the cosine 

terms��A ∆�,��A ∆�,and��A∆�Ñ forthe {air/film/substrate}-structure  
 

Now, let us find the normal-incidence expressions for the cosine terms of the angles ∆k, ∆5 and ∆kÑ  
defined in the formulas of the total transmittance and reflectance of an {air/film/substrate}-stack, that is, cos ∆k = cos.�v�B − v��� − ¼50, cos ∆kÑ = cos.�v�� − vB�� − ¼50, and cos ∆5 = cos.�vB� + v��� − ¼50. 
Usetrigonometric identities sin��k ± �5� = sin�k cos�5 ± cos�k sin �5 and cos��k ± �5� = cos�k cos�5 ∓ sin�k sin �5to simplify these cosine terms as  
 cos ∆k = cos�v�B − v��� cos ¼5 + sin�v�B − v��� sin ¼5               = .cos v�B cos v�� + sin v�B sin v��0 cos ¼5+ .sin v�B cos v�� − cos v�B sin v��0 sin ¼5                                                                             �C1� 
 cos ∆kÑ = cos�v�� − vB�� cos ¼5 + sin�v�� − vB�� sin ¼5               = .cos v�� cos vB� + sin v�� sin vB�0 cos ¼5+ .sin v�� cos vB� − cos v�� sin vB�0 sin ¼5                                                                            �C2� 
 cos ∆5 =  cos�v�B + v��� cos ¼5 + sin�v�B + v��� sin ¼5               = .cos v�B cos v�� − sin v�B sin v��0 cos ¼5+ .sin v�� cos vB� + cos v�� sin vB�0 sin ¼5                                                                            �C3� 
 

Assume the substrate of this structure to be a transparent nonmagnetic dielectric layer with �B = 0 and 
an index of refraction 	B and the film (layer 2) to be partially absorbing with an index of refraction 	 and 
extinction coefficient �. Then, substitute the values of the trigonometric sines and cosines of the phase 
angles v�� and v�B obtained from the expressions of tan v�� (= tan v��) and tan v�B (= tan vB�) described 
in the text by Equations (92) and (93)into the above-cited Equations (C1), (C2), and (C3)toget  
 

cos ∆k= å�	55 + �55 − 1� ∗ �	55 + �55 − 	B5� + 4 	B�55äHoÖ æ cos ¼5 

                                          +2�5 å�	55 + �55 − 	B5� − 	B�	55 + �55 − 1�äHoÖ æ sin ¼5                                       �C4� 

 

cos ∆kÑ = å�	55 + �55 − 1� ∗ �	55 + �55 − 	B5� + 4 	B�55äHoÖ æ cos ¼5 

                                           +2�5 å	B�	55 + �55 − 1� − �	55 + �55 − 	B5�äHoÖ æ sin ¼5                                     �C5� 

 

cos ∆5 = å�	55 + �55 − 1� ∗ �	55 + �55 − 	B5� − 4 	B�55äHoÖ æ cos ¼5 

                                              −2�5 å	B�	55 + �55 − 1� + �	55 + �55 − 	B5�äHoÖ æ sin ¼5                                   �C6� 

 
Where the parameter coefficientäHoÖ is given by the expression  
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äHoÖ = M.�	55 + �55 − 1�5 + 4�550 ∗ .�	55 + �55 − 	B5�5 + 4 	B5�550                                                    �C7� 
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